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Pollinators are an integral part of agriculture and the ecosystem. However, due to 

changing land use, populations of wild pollinators are decreasing and plant distributions 

are changing all around the world. To understand how plant-pollinator networks will 

adapt over time, we would like to understand how pollinators choose flowers to visit. We 

will model a pollinator’s interaction with plant species in two ways: first using a 

probabilistic multinomial approach to fit a preference score to each plant and second to 

explain our findings from the multinomial model using the traits of the flowers 

themselves. Our findings show that a model with preferences performs better than a 

model which does not have preferences. While this model shows potential in finding 

plant preferences, it does not fully explain the distribution of plant-pollinator interactions. 

To try to explain the interactions more fully, we incorporated the traits of the plants into 

the score of the plant. We found that the traits do have some effect on the score of the 

plant, but again do not fully explain the interactions in this particular model.  
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Introduction 

Motivation 

Environmentalists and policy makers are worried about the decline of insect pollinators 

(such as bumblebees, moths, and butterflies) (Tylianakis, 2013), which are important to 

both the agricultural industry and many ecosystems (Tylianakis, 2013; Aizen, et al., 

2009). These pollinators are disappearing, and it is neither a local phenomenon nor a 

single species. Populations of wild pollinators are decreasing around the world due to 

changing land use (Fitzpatrick, et al., 2007; Biesmeijer, et al., 2006). Ecologists predict 

that the loss of pollinators will affect plant biodiversity (Tylianakis, 2013). Pollinators are 

also important in agriculture because around 30% of the plants we eat require pollination 

in order to produce fruits and vegetables (Tylianakis, 2013). As wild pollinator 

populations decrease, we must supplement them with managed honeybee hives. 

However, this comes with a price as studies have shown that the yield for these plants 

increases when they are pollinated by wild pollinators (Aizen, et al., 2009). 

Experts are also concerned about how plant extinctions will affect insect pollinator 

populations, and there is evidence that pollinator extinctions are followed by plant 

extinctions (Biesmeijer, et al., 2006; Aizen, et al., 2012). However, there is also evidence 

suggesting that pollinators, even ones that have been observed exclusively interacting 

with only a few plants, can adapt to changing plant species distributions (Tylianakis, 

2013). Understanding more about how pollinators choose the flowers they visit will help 

us predict how plant-pollinator networks will respond to changes in the distribution and 

abundance of the species within the network.  

Objective 

The objective of this study is to create a method to identify a ranking of plant preferences 

for a pollinator given field observations of plant-pollinator interactions and to determine 

how floral traits affect the preference for each plant. To do this, we developed a 

probabilistic model to identify the preferences in interaction networks under the 

assumption that the plant-pollinator interactions can be modelled using only the 

frequency of the interactions.  We used the data collected at the H.J. Andrews 

Experimental Forest by students from the Eco-Informatics Summer Institute (Pfeiffer, 

2011-2014) and explored an extension of this model to determine if the traits of the 

flowers affect the preferences of a pollinator. In this thesis, we will focus on identifying 

the preferences of pollinators that interact with a large variety of plant species.  

We applied these models to analyze plant-pollinator observations collected in the field. 

These models take steps towards creating models that will be able to predict plant-

pollinator interactions in the case of the extinction of existing plants in a network, the 
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introduction of invasive species of plants to the area, or the restoration of an extirpated 

plant to an area. 

 

Background Information 

To understand the behavior of pollinators (e.g., to determine their preferences), we must 

first understand the background of plant-pollinator interactions. The relationship between 

insect pollinators and flowers is mutualistic, as flowers need to be pollinated and insects 

use flowers as a source of food, so plants and pollinators co-evolved. To ensure that they 

can gather enough food, pollinators do not want to compete with other species, so there is 

a push to focus only one plant species. However, if the pollinator becomes dependent on 

this one plant species, and this species becomes extinct, the pollinator may also be in 

danger of going extinct. The same is true for plants and pollination.  A generalist plant or 

pollinator is one that interacts with many species of the other group. A specialist plant or 

pollinator only interacts with one or few species of the other group.  

There are a few species that are well known to be truly specialist pollinators (such as 

species in the genus Dufourea—each species specializes on a different flower) 

(Moldenke, 2015). However, much specialization occurs due to the physical 

characteristics of flowers that limits some pollinators from visiting. For example, some 

flowers hang suspended which does not allow the pollinator to land on the flower and the 

pollinator must fly into the flower (Moldenke, 2015). Collecting nectar and pollen in this 

manner takes energy and certain skills, which not all pollinators have. As another 

example, some plants have petals closed around the rewards (pollen and nectar), so the 

pollinators for those plants need to have the skill to open the flower to access the rewards. 

In cases where unrelated plants share similar pollinators and physical attributes, the 

shared physical attributes are called pollination syndromes. We have some evidence 

supporting pollination syndromes, but we need more critical examination of this theory 

(Johnson & Steiner, 2000).  

Many plants, such as plants that are highly dispersed and perennials, benefit greatly by 

being pollinated by specialist pollinators. Plants that are highly dispersed would probably 

specialize on one pollinator that is loyal to that plant species so that the stigmas are not 

clogged by pollen of more abundant plants (Johnson & Steiner, 2000). The perennials in 

this study are highly dispersed, but perennials also live over multiple years, so they have 

multiple chances for pollination and the opportunity to specialize on just a few loyal 

insects. 

Other plants may benefit from being pollinated by generalist pollinators (Johnson & 

Steiner, 2000). Annual plants encourage generalist pollinators (Johnson & Steiner, 2000) 
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because they only have one chance at pollination and attracting as many pollinators as 

possible means more chances of pollination in that short period of time. Annuals also 

vary greatly in abundance year to year, so pollinators are unlikely to specialize on these 

plants (Moldenke, 2015). Abundant plant species and plant species with separate sexes 

are also predicted to be pollinated by many different pollinators, but especially generalist 

pollinators (Johnson & Steiner, 2000).  

While we have many studies on pollination syndromes and the specialization of plants 

and pollinators, we must remember that some pollinators could be labeled incorrectly as 

specialists due to sampling error. If a pollinator is very rare, researchers will observe only 

a few of the interactions it makes. If these few interactions are with the same plant 

species, the pollinator might be labelled a specialist without enough evidence (Bluthgen, 

2010). There are many methods to determine if a species was present in the field but was 

not detected, from statistical models (MacKenzie, et al., 2002) to machine learning 

models (Hutchinson, et al., 2011). With the data collection protocol followed for the data 

used in this thesis, the previous methods are not needed. However, this shows that the 

abundance of plants is also critical when trying to model plant-pollinator interactions. If a 

plant is very abundant, a generalist pollinator might visit this plant even if it prefers a 

rarer plant much more.  

Competition also plays a huge role in field studies like the one used for this study. If a 

flower is open both at night and in the day, many nocturnal pollinators (such as moths) 

may visit the flower at night leaving less nectar for the pollinators who visit during the 

day. Researchers during this field study also noticed that bumblebees and honeybees tend 

to start their foraging earlier in the morning than solitary bees. This could mean that 

solitary bees visit flowers with less reward because the nectar from other flowers was 

already consumed by the social bees (Pfeiffer, 2011-2014). This would cause the solitary 

bees to behave as if they are specialized in flowers that bumblebees and honeybees do not 

like. 

Other pollinator preferences have also been studied such as flower symmetry, flower 

color, and corolla (petal) shape (Gomez, et al., 2008; Moller & Sorci, 1998; Rodriguez, et 

al., 2004). These studies show that the corolla shape is a very important factor in the 

preferences of pollinators. However, corolla shape could be important only due to other 

related factors. For example, flying and hovering over a flower consumes much of a 

pollinator’s energy. Therefore, corolla shape may only be important because the petals 

form a platform for the pollinator to land on or allow the pollinator to walk to the next 

flower. Researchers have also hypothesized that corolla size and shape could give the 

pollinator a clue as to the reward from visiting the flower. Flower color has been a 

popular target for pollinator preference studies (especially bees). The theory is that 
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brightly colored flowers (whites, yellows and oranges), reflect ultraviolet rays making 

them more visible to insects. Reds and dark colors are theoretically not as visible to 

pollinators (Moldenke, 2015), but studies of German wildflowers and lowland tropical 

plants show that flower color by itself is not significantly correlated with pollinator 

preferences (Johnson & Steiner, 2000). 

Evolutionary theory states that if pollinators are specialists, and the plant they depend on 

becomes extinct, the specialist pollinator will also go extinct (Biesmeijer, et al., 2006; 

Memmott, et al., 2007; Aizen, et al., 2012). However, some studies suggest that declines 

of specialist populations are not caused by simple food-plant specialization (Fitzpatrick, 

et al., 2007) and others find that the specialist pollinators are the ones acquiring new plant 

interactions (Tylianakis, 2013). Field studies today contain interactions that are not 

recorded in historical studies and tend to involve species with previously narrow diets 

(Tylianakis, 2013). This could mean that even specialist pollinators can adapt to human 

alterations of the landscape, such as introduction of foreign or invasive species. 

Ultimately, pollinator preference modeling could aid conservation biologists by finding 

which plant, if any, could be introduced to an area to best help a struggling pollinator 

species.  

Because the quantity and quality of pollination experienced by plants is also declining 

(Tylianakis, 2013), a few species of generalist pollinators is not enough to keep plant 

biodiversity intact. For example, the managed honeybee (Apis mellifera) populations are 

now commonly being raised on agricultural fields to supplement pollination normally 

performed by wild pollinator populations (Tylianakis, 2013; Aizen, et al., 2009). 

However, agricultural crops that require pollination yield more produce when pollinated 

by a variety of wild pollinators regardless of the presence of Apis mellifera (Aizen, et al., 

2009; Tylianakis, 2013). Experts found that honeybees are not equally efficient at 

pollination of different plant species even though they frequently transport a lot of pollen 

(Tylianakis, 2013).  

Relative to this thesis, there are two relevant approaches to the study of insect pollination: 

network analysis and modelling and preference modelling. In network analysis, plant-

pollinator interactions are modeled as bipartite graphs (Bascompte, et al., 2003). Bipartite 

graphs have two disjoint sets of nodes and connections only exist between nodes in 

different sets. No connections occur between two nodes in the same set. In this case, plant 

species and pollinator species make up the two sets of nodes and the interactions between 

plants and pollinators are translated to connections. Bipartite networks are used to study 

plant and pollinator network structure. Research on these networks has shown that in 

large field studies, generalist pollinators visit nearly all plant species and most specialist 

pollinators visit plants species that are already visited by many generalist pollinators  
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(Bascompte, et al., 2003; Moldenke, 1979). Network analysis, while not used in this 

thesis, could be helpful as we grow our models from looking at a single pollinator species 

to multiple pollinator species. 

Another modelling approach is to model the behavior of pollinators due to apparent 

preferences. One study examined how pollinator preferences for wild flowers in field 

margins were affected by agricultural monocultures (Rands & Whitney, 2010). The 

model created in this study found that pollinators located within agricultural fields 

preferred the wild flowers in the field margins as the density of the wild flowers 

increased. This study was based on the idea that pollinators show density–dependent 

preferences, sometimes even avoiding plants that are unfamiliar (Rands & Whitney, 

2010). We will present a new modelling approach to pollinator preferences in a field of 

wild flowers without the influence of agriculture.
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Materials and Methods 

Field Study Data 

The data analyzed in this study is from a field study conducted by Vera Pfeiffer in the 

summer of 2011 and by the students at the Eco-Informatics Summer Institute (EISI) over 

the summers of the years 2012-2014. The field observers recorded plant and pollinator 

interactions in 18 meadows in the H.J. Andrews Experimental Forest, involving 109 

plants and 293 pollinators over 4 years. During each year, observations were collected at 

a subset of the 18 total meadows. Each meadow was visited by researchers about 5 times 

each summer. Each visit is called a meadow-watch. For example, Figure 1 shows the 

interactions between plants and pollinators during one meadow watch.  

 

Figure 1: This figure shows the plant-pollinator interactions recorded at the Lookout meadow, watch 2 in 2014. 

Each row represents a plant that was available during the meadow-watch and each column represents a 

pollinator that was observed interacting with a plant during the meadow-watch. The darker a cell is shaded, the 

more interactions were observed between the respective plant and pollinator. The most abundant interactions 

were between Apis mellifera and Gilia capitata, Apis mellifera and Eriophyllum lanatum, and Bombus mixtus and 

Lupinus laxiflorus. There were a total of 1729 interactions recorded at this meadow-watch. 

In each meadow-watch, observations of plant-pollinator interactions were made in 10 

plots in the meadow during 15 one-minute intervals. The record for each interaction 

includes the plant, the pollinator, the meadow-watch, the plot, and the number of times 

the interaction was seen during that minute. At each interval, the temperature, time of 

day, and cloud cover were recorded. For our purposes, we will use 𝑁𝑡(𝑖, 𝑗) for the total 

number of interactions observed between plant 𝑖 and pollinator 𝑗 over all 10 plots and all 

15 one-minute intervals of meadow-watch 𝑡.  
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Before every meadow-watch, researchers surveyed the plant species in all 10 plots in the 

meadow watch, noting the plots where the plants were located as well as how many 

flowers of that plant species were blooming. This data was compiled into a separate 

dataset for plant availability. We will use 𝐴𝑡(𝑖) to indicate the total number of flowers of 

plant species 𝑖 during meadow-watch 𝑡. 

 

Models 

Multinomial Model 

The goal of the multinomial model is to statistically determine which plants a pollinator 

prefers from the field study data by fitting a multinomial distribution. In this model, a 

given pollinator assigns preference scores (also referred to as scores and by ϕ) to each 

plant species indicating how much the pollinator likes that species. A higher score 

indicates that the plant species is preferred more than a plant species with a lower score. 

Our goal in this model is to find ϕ𝑗, which represents the score function for some 

pollinator 𝑗.  

In the multinomial model, we can think of the pollinator “rolling a die” with the names of 

a plant species on each side of the die to determine which plant species it will visit next. 

However, this die is not evenly weighted. Each side of the die will be weighted 

differently according to a score that depends on the preference score and the relative 

abundance of the plant in the meadow. The preference score for each plant is fixed for the 

full dataset. We then use the interaction data for that pollinator species and the 

probabilities of the pollinator visiting each plant to calculate the likelihood of the set of 

observed interactions.   

First consider the set 𝑋 =  {1. . . 𝑃} which ennumerates all plant species. On some 

meadow watch t, only a subset of 𝑋 is available. The availability of plants at meadow-

watch t can be denoted by a vector 𝐴𝑡 of size 𝑃 where the number of flowers of plant 

species 𝑖 is denoted by 𝐴𝑡(𝑖)  ∈  ℕ. Now, we know that pollinator 𝑗 makes a collection of 

visits on meadow-watch 𝑡, 𝑉𝑡  =  {𝑁𝑡(1), 𝑁𝑡(2), … , 𝑁𝑡(𝑃)}. We denote the number of 

times 𝑗 visits 𝑖 by 𝑁𝑡(𝑖) = ∑  𝐼[𝑉𝑡(𝑘), 𝑖]
𝐾𝑡
𝑘=1  where 𝐼[𝑉𝑡(𝑘), 𝑖] is an indicator function. The 

total number of visits made is 𝐾𝑡. The indicator function is equal to 1 when  𝑉𝑡(𝑘) is 

equal to 𝑖 and 0 otherwise. In this collection, 𝑣𝑘  ∈  {1, … , 𝑃} and 𝑣𝑘 represents the 𝑘th
 

plant species that was visited by pollinator 𝑗 on meadow-watch 𝑡.  

The pollinator assigns a score for each plant 𝑖 which we will denote as the score 

function ϕ𝑖𝑗 ∈ ℝ. This function gives a real-valued score to plant 𝑖 indicating the 
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pollinator 𝑗’s relative preference for 𝑖. Then the probability that pollinator 𝑗’s 𝑘th
 visit was 

to plant 𝑖 is: 

𝜃𝑖(𝐴𝑡 , ϕ𝑗) =  𝑃(𝑣𝑘 = 𝑖 | 𝐴𝑡 , ϕ𝑗) =  
𝐴𝑡(𝑖) exp(ϕij)

∑ 𝐴𝑡(𝑖′) exp(ϕi′j)
𝑃
𝑖′=1

 . 

   

The likelihood of observing the visits 𝑉𝑡 visited by pollinator 𝑗 on meadow-watch 𝑡 is: 

𝐿(𝑉𝑡; ϕ𝑗) =
𝐾𝑡!

𝑁𝑡(1)! … 𝑁𝑡(𝑁)!
∏ 𝜃𝑖(𝐴𝑡 , ϕ𝑗)

𝑁𝑡(𝑖)

𝑖

 . 

 

Over the entire summer, the likelihood of the observed data is: 

𝐿(𝑉𝑡; ϕ𝑗) = ∏ (
𝐾𝑡!

𝑁𝑡(1)! … 𝑁𝑡(𝑁)!
∏ 𝜃𝑖(𝐴𝑡 , ϕ𝑗)

𝑁𝑡(𝑖)

𝑖

)

𝑡

. 

As the resulting likelihood values will be extremely small, we will want to work in log-

space. Therefore, we will use the loglikelihood of the observed data: 

𝐿𝐿(𝑉𝑡; 𝜙𝑗) = ∑ (log (
𝐾𝑡!

𝑁𝑡(1)! … 𝑁𝑡(𝑁)!
) + ∑ 𝑁𝑡(𝑖) log(𝜃𝑖(𝐴𝑡 , ϕ𝑗))

𝑖

)

𝑡

 

𝐿𝐿(𝑉𝑡; 𝜙𝑗) = ∑ (log(𝐾𝑡!) − (log (𝑁𝑡(1) + ⋯ + log (𝑁𝑡(𝑁))

𝑡

+ ∑ 𝑁𝑡(𝑖) log(𝜃𝑖(𝐴𝑡 , ϕ𝑗))

𝑖

) . 

We also introduce a regularization term to reduce over fitting the model. The parameter 

lambda will be calibrated, via cross-validation, to optimize the ability of the model to 

generalize to new meadow-watches. Our final likelihood model will be: 

𝑃𝐿𝐿(𝑉𝑡; 𝜙𝑗) = 𝐿𝐿(𝑉𝑡; 𝜙) −  𝜆 ∑ 𝜙𝑖𝑗
2

𝑖
 

The 𝜙𝑗 parameters we choose will be the 𝜙𝑗  which maximizes the 𝑃𝐿𝐿 () function 

(penalized log likelihood) for the interactions we observe in the field data.  
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Originally, we planned to use a multinomial model in which we truncated the interaction 

counts to 0 and 1 to indicate whether the interaction occurred or not. However, the 

preliminary work showed that this model cannot be applied to all pollinators in general. 

Please see Appendix A for more details about this model and the results from this model. 

 

Traits Model 

The traits model investigates whether the traits of the available plants can predict the 

preferences of the pollinators. We take two approaches with this model. The first is a 

two-phase approach where we first fit the score function and then use the traits to predict 

the scores. The second is a single combined model to see how well the preferences can be 

expressed in terms of the traits. 

For simplicity, we chose a linear model where the traits of the plant species are 

represented by the matrix  𝑇 = {1, 𝑡1, … , 𝑡𝑛} with one row for each species where 1 

represents the intercept and 𝑤0, 𝑤1, … , 𝑤𝑛 are the corresponding coefficients. The term 

𝑤0 is the intercept. Our goal in this model is to find 𝑤0, 𝑤1, … , 𝑤𝑛 which are constant 

over all the plants. 

We can now express ϕ𝑖𝑗, the score given to plant 𝑖 by pollinator 𝑗, in terms of the traits. 

𝜙𝑖𝑗 = 𝑤0 +  𝑤1𝑡1𝑖 + 𝑤2𝑡2𝑖 + ⋯ + 𝑤𝑛𝑡𝑛𝑖. 

 Two-Phase Approach 

We will first consider ϕ̂𝑖𝑗, the score given to plant 𝑖 by pollinator 𝑗, that we fit to the data 

using the multinomial model. We will use a linear regression to find the values of the 

coefficients. The linear regression may provide insight into which, if any, of the floral 

traits seem to affect the preference scores of the pollinator as expected. If the regression 

shows that there is a correlation between the plant’s traits and the score given to the plant, 

we can use the combined model explained in the next section. 

Combined Model 

In this model, we will reparameterize the multinomial model such that the probability is 

calculated using the traits rather than the ϕ score. In that case, the probability in the 

multinomial model will be: 

𝜃𝑖(𝐴𝑡 , 𝜙̂) =  𝑃(𝑣𝑘 = 𝑖 | 𝐴𝑡 , ϕ) =  
𝐴𝑡(𝑖) exp(𝑤0 +  𝑤1𝑡1𝑖 + ⋯ + 𝑤𝑛𝑡𝑛𝑖)

∑ 𝐴𝑡(𝑖′) exp(𝑤0′ +  𝑤1𝑡1𝑖′ + ⋯ + 𝑤𝑛𝑡𝑛𝑖′)
𝑁
𝑖′=1

. 

We can then continue to evaluate the multinomial model as a function of the traits of a 

plant. We will use gradient descent to find the coefficients 𝑤0, 𝑤1, … , 𝑤𝑛. 
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The Traits 

We will be evaluating the effect of 11 traits of a flower on the score function. The values 

for most of the traits are categorical values. R handles these categorical values 

automatically for us. The 11 traits are the following: 

1. Biomass/flower: Estimate of reward per flower (inflorescence) per species. 

Measured by multiplying the height, width, and length of the flower. 

2. Visibility: The color of the flowers. The values for this trait are either “bright” or 

“not bright”. 

3. Closed: Flowers can either be closed or open. Closed flowers can only be 

pollinated by the pollinators that are skilled at prying the flower open. Open 

flowers do not require pollinators to have that skill.  

4. Pendant: Flowers are either suspended or erect. Erect flowers bloom facing up. 

Suspended flowers open to the side or upside down and pollinators must have the 

skill to approach the flower from the bottom. 

5. General Tube Shape: The general shape of the plant causes some pollinators to be 

excluded by the plant. Plants are categorized as severe exclusion, moderate 

exclusion, and poor exclusion depending on the width, length, and shape of the 

plant’s tube.  

6. Life Form: This trait categorizes plants as annuals or perennials. 

7. Flower Form: This trait states if the flower is a bowl or plate shaped flower or if 

exclusions apply. 

8. Pollen Size: The value of this feature is “okay” if the pollen of the plant is of 

average size and “difficult” if the pollen is either small or large. If the pollen is 

too small or too large, bees are unable to harvest the pollen. 

9. Diel: The value of this feature is “yes night” if the plant is ever open during the 

night time and “no night” if the plant is only open during the day. 

10. Platform: This feature can have a value of “strong”, “weak”, and “not useful”. 

The value “not useful” indicates that the plant is not useful for mating purposes, 

because the flower does not provide the visibility (advertising) necessary for an 

insect to find a mate. The value “strong” indicates that the advertising value for 

this flower is very high, and the value “weak” indicates that the flower does not 

have very much advertising value. 

11. Feebleness: This feature measures how strong the stem of the plant is. If the value 

of this feature is “feeble”, it means that large insects will break the flower if they 

try to land on it. If the value is “strong”, the size of the pollinator may also come 

into play.  
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Simulated Data Generation 

It is necessary to evaluate the models with simulated data in order to debug and 

understand them. Before we proceeded with the field data, we wanted some reassurance 

that the model we are working with was doing a good job in the ideal situation where the 

assumptions of the model are being met. Therefore, in our initial evaluation of the 

models, we generated simulated plant-pollinator interactions. 

To do this, we sampled the simulated data from the distribution specified by the 

multinomial model using three score functions that we chose to reflect different kinds of 

pollinators. We generated simulated data for all the meadow-watches over all 4 years and 

used the availability for plant 𝑖 at meadow-watch 𝑡 (𝐴𝑡(𝑖)) that is reported in the field 

data. 

To generate the data, we specified three different score functions. The “normal” score 

function, representing a generalist pollinator with some preferences, was based on 

random numbers generated in the range [−2, 2] with a zero-mean. The “half-special” 

score function, representing a specialist pollinator that prefers a few plants much more 

than all the others, had all but 3 plants with a score of −2. The 3 preferred plants had a 

score of 2. The “true special” score function, representing a specialist pollinator that 

prefers one plant above all others, had only one plant with a score of 2. All other plants 

had a score of −2. 

Using these three score functions and the plant availability provided in the anthesis data 

from the field, we calculated the probability of the pollinator visiting each plant at that 

meadow watch.  Then, to simulate the plant-pollinator interactions, we used the 

rmultinom() function in R to randomly assign a pre-set number of visits that pollinator 

makes to a certain plant in a certain meadow-watch. We chose to allow the pollinator to 

make 50 visits during one meadow-watch after analyzing the number of visits Apis 

mellifera makes during one meadow-watch. This generates the 𝑁𝑡(𝑖) we use in the 

multinomial and traits models. 

After conducting experiments using the simulated data, we ran the models on field data 

from each year separately to see how the pollinators in our study responded to different 

plant distributions. We also ran our model on the cumulative set of data. 

To simulate data for the evaluation of the traits model, we followed a similar approach. In 

this simulation, we used the real traits for each flower along with the real availability for 

each flower at each meadow. We set weight vector 𝑊, which acts as the coefficient to the 

traits, to find the resulting score function 𝜙 using the equation 𝑇 ∙ 𝑊 =  𝜙. We then 

simulated a pollinator with score function 𝜙 using the method described above. A new 
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weight vector 𝑊̂ is fitted to the simulated data. We can generate the score function 

associated with 𝑊̂ by using the equation 𝑇 ∙ 𝑊̂ =  𝜙̂. 

 

Bootstrapping for Confidence Intervals 

One concern we have when using the field observations is that we do not know the true 

distribution of the data, and we only have one dataset. If we had more datasets, we could 

create confidence intervals for the preference scores that are fitted by the model to each 

dataset. This would show us a range in which to expect the true value of the preference 

score and would give us confidence that some plant species are really ranked higher than 

or lower than other plant species. 

The idea behind bootstrap is to use the field observations as a population that 

approximates the true distribution of interactions. We can then create new samples from 

the field observations by resampling from the field observations without replacement. We 

created 200 bootstrapped datasets for each year and the aggregate dataset over all years. 

To create the bootstrapped datasets, we resampled from the original field interactions in 

each meadow-watch the same number of times the meadow was used in the original 

dataset. We then fitted the model to the bootstrapped meadow-watch interactions. 

 

Evaluation 

Goodness of Fit—Chi-Squared Test 

The Chi-Squared goodness of fit test determines whether the distribution of the sample 

population matches the distribution predicted by the fitted model for the interactions 

observed for one pollinator 𝑗. To determine if we can reject the null hypothesis, we 

compare the expected and observed frequency counts of each variable using the test 

statistic 

𝜒2 =  ∑ ∑
(𝑂𝑖𝑡 − 𝐸𝑖𝑡)2

𝐸𝑖𝑡

𝑃𝑡

𝑖=1

𝐿

𝑡=1

 . 

Here, 𝑃𝑡 is the number of plant species available at meadow-watch 𝑡, 𝐿 is the number of 

meadow-watches in which both the pollinator was observed, and 𝑂𝑖𝑡 =  𝑁𝑡(𝑖). 𝐸𝑖𝑡 is the 

number of interactions we expect between the pollinator and plant species 𝑖 on meadow-

watch 𝑡. We then fit 𝜙̂ to the field data and calculate 𝐸𝑖𝑡 =  𝜃𝑖(𝐴𝑡 , 𝜙̂) ∑ 𝑂𝑖𝑡
𝑃
𝑖 .  
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The total number of terms in our 𝜒2 test statistic is 𝑋, which is the number of possible 

(meadow-watch, plant) pairs (each pair is a cell) where the pollinator had a probability 

greater than zero for visiting that plant at that meadow-watch. 𝑋 is slightly less than 𝐿𝑃 

where 𝑃 is the total number of plant species in the dataset. 

For this test, we must penalize one degree of freedom for each meadow the pollinator was 

present in (𝐿) because we use the number of visits observed in the meadow rather than 

estimating this quantity independently. As we are also estimating 𝜙 for each plant, the 

number of parameters is 𝑃, and we must penalize one degree of freedom for each 

parameter. Because we fit a regularization parameter lambda, we must penalize one 

degree of freedom for that. Our final calculation for the degrees of freedom (𝑑𝑓) is 

𝑑𝑓 = 𝑋 − 𝐿 − 𝑃 − 1 . 

The chi-squared test compares a null hypothesis (H0) to an alternative hypothesis (H1). In 

this case, we will run two tests. The first test will have a null hypothesis as the uniform 

score function (the preference score for each plant species is the same) and the alternative 

hypothesis will be that the true distribution is not the uniform distribution. The second 

test will have the null hypothesis that is equivalent to the learned probability distribution 

and the alternative hypothesis will be that the true distribution is not equivalent to the 

learned probability distribution. 

A smaller 𝜒2 indicates a better fit. We will then compare the 𝜒2 statistic with the 𝜒2 

distribution to determine the p-value of this test. If the p-value is less than 0.05, we will 

reject the null hypothesis for that test. 

Correlations 

We used the Pearson’s product-moment correlation coefficient (Pearson’s 𝑟) and 

Spearman’s rank correlation coefficient (Spearman’s 𝜌) to evaluate the scores fitted to 

simulated data using the multinomial model in comparison to the true scores (comparing 

𝜙 to 𝜙̂).  

Pearson’s 𝑟 is a test statistic that measures the linear correlation between two variables X 

and Y. An r value of +1 denotes full positive correlation, -1 denotes full negative 

correlation, and 0 denotes no correlation between the variables. The Pearson 𝑟 is defined 

as follows: 

𝑟 =  
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 −  𝑥̅)2 𝑛
𝑖=1  √∑ (𝑦𝑖 −  𝑦̅)2 𝑛

𝑖=1
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In this statistic 𝑥𝑖  and 𝑦𝑖  are elements in the variable sets 𝑋 and 𝑌. 𝑥̅ and 𝑦̅ are the 

means of each set. When comparing the true scores and the estimated scores, if the model 

fits well, the statistic will have a value close to 1. 

Spearman’s 𝜌 is defined as the Pearson correlation coefficient for ranked variables in two 

sets 𝑋 and 𝑌. Each element in the sets 𝑋 and  (𝑋𝑖, 𝑌𝑖) are turned into ranks 𝑥𝑖 and 𝑦𝑖 that 

are calculated using the position of the element in ascending order in the set. If there are 

ties, the elements with ties are given an average rank by adding up all the positions and 

dividing by the number of elements with the same value. After the ranks are ascertained, 

we calculate the Spearman’s 𝜌 statistic: 

𝜌 = 1 − 
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 . 

In this statistic, 𝑑𝑖  =  𝑥𝑖  – 𝑦𝑖, which is the difference between ranks. When comparing 

the true scores and the estimated scores, we expect to have ρ close to 1. 

Likelihood Ratio Test 

We used the likelihood ratio test to compare the multinomial model and the traits model. 

This test is similar to the Chi-Squared test in that it can be used to make a decision 

between two hypotheses. However, the likelihood ratio test is used to see if the likelihood 

of a model with a given set of parameters 𝜃0 has a likelihood significantly different to the 

likelihood of a model with a different set of parameters 𝜃1 where 𝜃0 is the null hypothesis 

and 𝜃1 is the alternative hypothesis.  

The test statistic 𝛬(𝑥) calculates the ratio between the likelihood of the observed data 

using the parameters 𝜃0, denoted by the function 𝐿(𝜃0|𝑥), and the likelihood of the 

observed data given 𝜃1, denoted by the function 𝐿(𝜃1|𝑥): 

𝛬(𝑥) = −2 ∗ log ( 
𝐿(𝜃0|𝑥)

𝐿(𝜃1|𝑥)
 ). 

A large value of 𝛬(𝑥) suggests that the null hypothesis gives a much better fit to the data 

than the alternative. 



 

 

15 

 

Results 

Multinomial Model 

Using Simulated Data 

Our first step was to test the multinomial model on the simulated data. For each of the 

three “true” score functions (normal, half-special, and true-special), we conducted 10 

trials. In each trial, the simulated pollinator had 50 interactions with the plants in each 

meadow-watch. We conducted these tests using both the unregularized multinomial 

model and the regularized multinomial model to assess the effect of regularization. In 

each test, we compared the score function fitted by the model using the simulated 

interaction data to the true score function using Spearman’s 𝜌 and Pearson’s 𝑟 correlation 

statistics.  

Through these experiments we find that the multinomial model works well when dealing 

with a true normal score function both with and without regularization. We see in both 

Table 1 and Table 2, both Kendall’s 𝜏 and Spearman’s 𝜌 correlations are quite high for 

the normal score function. Higher values for these two statistics indicate that the score 

functions when ranked match up well. The higher value for Pearson’s 𝑟 statistic in Table 

2 for the normal distribution indicates that the exact values of the score functions match 

up better with regularization. We can see the effect of regularization on Pearson’s 𝑟 in 

Figure 1 and Figure 2. We believe that the most appropriate correlation measure for this 

task is Pearson’s 𝑟. Our objective is to find the most accurate score function for the 

pollinator. Pearson’r 𝑟 is the most accurate measure for that. Kendall’s 𝜏 and Spearman’s 

𝜌 correlations measure how well the ranks (which are different from the scores) of the 

pollinators match up. 

The biggest problem with the unregularized model is the large negative values assigned 

to plants that are available to the pollinator, but are never visited. These large negative 

values are a result of not being able to calibrate the score function to the data. To penalize 

the model if it assigns large negative values, we will use the regularized multinomial 

model. We used cross-validation to choose a 𝜆 for the penalized multinomial model and 

found that the best 𝜆 = 0.25. This was the best regularization term across datasets. We 

also see that without regularization, the fitted score function does not match the true score 

function well for the half-special and true-special score functions. Pearson’s r improves 

greatly with regularization for the half-special and true-special score functions. 
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Table 1: Correlation between the true score function and fitted score function without regularization over 10 

trials. 

 Normal Half-Special True-Special 

Spearman’s rho Mean: 0.889 

Deviation: 0.027 

Range: 0.854-0.926 

Mean: 0.283 

Deviation: 0.0 

Range: 0.283-0.283 

Mean: 0.165 

Deviation: 0.0 

Range:0.165-0.165 

Pearson’s r Mean: 0.531 

Deviation: 0.043 

Range: 0.462-0.608 

Mean: 0.221 

Deviation: 0.022 

Range: 0.178-0.266 

Mean: 0.221 

Deviation: 0.032 

Range: 0.192-0.299 

 

Table 2: Correlation between true score function and fitted score function with regularization over 10 trials. 

 Normal Half-Special True-Special 

Spearman’s rho Mean: 0.865 

Deviation: 0.021 

Range: 0.827-0.901 

Mean: 0.283 

Deviation: 0.0 

Range: 0.283-0.283 

Mean: 0.165 

Deviation: 0.0 

Range: 0.165-0.165 

Pearson’s r Mean: 0.812 

Deviation: 0.025 

Range: 0.768-0.858 

Mean: 0.664 

Deviation: 0.059 

Range: 0.597-0.796 

Mean: 0.560 

Deviation: 0.062 

Range: 0.485-0.659 
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Figures 1 and 2 compare the values of the fitted phi parameters to the true phi parameters 

in the simulation. A pattern that is interesting to note is that the fitted scores can be 

separated into 4 categories depending on the availability of the plant and the usage of the 

plant by the pollinator.  

1. Plant is not available, therefore it cannot be used (blue): Because the plant is 

never available, we cannot learn the pollinator’s preferences. Therefore the plant 

is always given a score of zero. There are a few of these points in the simulated 

data, but not many. These points are more evident when you have a smaller 

dataset. 

2. Plant is available, but is never used (green): In this case, the pollinator shows a 

strong preference against that plant species and the plant species is given a very 

low score. When using maximum likelihood estimation without penalization, the 

model sends the estimated preference scores to −∞. Regularization forces these 

values to smaller numbers.   

3. Plant is available and used between 1-10 times (red): The points in this category 

are generally close to the true value of the score for that plant.  
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Figure 2: This graph shows the effects of regularization 
(𝝀 = . 𝟐𝟓) on the fitted score function. In comparison 
to Figure 1, which does not have regularization, the 
dots on this scatter plot are much closer to the x = y 
line. The regularization also pulls the large negative 
values we see in Figure 1 towards their true values 

which improves the Pearson’s r test statistic. 

Figure 1: This plot shows the known (true) score 
function compared to the fitted (calculated) score 
function for the normal score function. The scores 

estimated by this model correlate well with the true 
scores of the pollinator. However, we have a group of 
large negative values under the x=y line. Also, while 

the fitted score function generally follows the shape of 
a linear line, it does not match the x = y line as we 

would like it to. 
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4. Plant is available and used more than 10 times (black): This category behaves in 

the same way as category 3. This category is more useful when analyzing the 

specialized distributions. The plants that receive the highest scores are usually in 

this category. 

These four categories are easy to see in Figure 1 where there was no regularization. With 

regularization, these four categories are not as separable. We can also see that that the 

fitted (calculated) score distribution with regularization is much closer to the 𝑥 = 𝑦 line. 

While we have only presented the comparison between the true and fitted score functions 

for the normal score function, the results are representative for the half-special and true 

special true score functions. In all subsequent sections, we will use the regularized 

multinomial model to fit the score functions. 

 

Experiments on the HJ Andrews Data: 

To test the model against the field interaction data, we performed goodness of fit tests on 

the data for each year as well as the aggregate data over all the years. We tested our 

model on visits made by Apis mellifera. The results from the goodness of fit tests are 

shown in Table 3. All the goodness of fit test resulted in 𝑝 = 0. This indicates that the 

expected values for the interactions are significantly different from the observed 

interaction data. We also evaluated the field interaction data against the expected visits 

for a pollinator using the uniform score function using goodness of fit tests. This test 

indicated that the field interaction data is significantly different from expected interaction 

values of a pollinator following the uniform score function.  

We also applied the likelihood ratio test to compare the hypothesis that the uniform and 

fitted preference models are equally good at explaining the observed data versus the 

alternative that the fitted preference model is better for the aggregate dataset. The test 

gives very strong evidence against the null hypothesis (𝛬 =  31483.65 with 977 df; 

𝑝 =  0). This shows that the ratio of likelihoods is extremely unlikely under the null 

hypothesis that the two models fit the data equally well. This means that the field data is 

better explained by the multinomial preference model than by the uniform preference 

model. 
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Figure 3: This figure shows the expected number of interactions calculated from the preference scores fitted to 

the field data using the multinomial model and the observed number of interactions for every possible (meadow-

watch, plant species) pair for Apis mellifera in the field data. Note that because the expected number of 

interactions ranged from 𝟏𝟎−𝟏𝟓 to 𝟏𝟎𝟓, the axis for the expected interactions is in log space. We see here that the 

expected interactions does not have a strong effect on the observed interactions.  

 

Table 3: The goodness of fit 𝝌𝟐 received comparing the field interactions of Apis mellifera to the expected 

interactions calculated using either a score function fitted to the field interaction data or the uniform score 

function. We find that the p-values are extremely low (𝒑 = 𝟎) in all cases.  

 Goodness of fit for the fitted 

score function (𝝌𝟐) 

Goodness of fit for the uniform 

score function (𝝌𝟐) 

2011 16167407 15091.87 

2012 1909409 11543.29 

2013 185040531 11103.43 

All Years together 22041400 17406.44 

 

Table 4 shows the plants that Apis mellifera preferred most for each year 2011, 2012, 

2013, 2014, and from an aggregation over all four years. We see that Hydrophyllum 

occidentale is the most preferred plant over all of the years. However, it only appears in 

the top ten most preferred plants of 2011. A closer look at the availability and usage of 

Hydrophyllum occidentale shows that this plant is available only in 2 meadow-watches in 

2011 and in 1 meadow-watch in 2012, with a total of 195 flowers across the two years. 
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However, Apis mellifera was only active in one of those three meadow watches (CNE 

Watch 1, 2011). The only visits Apis mellifera made during this meadow watch were to 

Hydrophyllum occidentale although there were many plant species which were more 

abundant.  

 

Table 4: The top 10 preferred plants for Apis mellifera for each year and then for the data aggregated over all of 

the years. We see that plants that appear in the top 10 most desired plants over all four years are likely to be in 

the top 10 most desired plants for the aggregate dataset, but not always as with Gilia capitata. Hydrophyllum 

occidentale likewise does not fit the pattern. It is in the top 10 for only one year, but also in the top 10 for the 

aggregate dataset. 

 2011 2012 2013 2014 All Years 

1 Hydrophyllum 

occidentale 

Rudbeckia 

occidentalis 

Rudbeckia 

occidentalis 

Rosa 

gymnocarpa 

Hydrophyllum 

occidentale 

2 Symphoricarpos 

mollis 

Luina stricta Sedum 

oreganum 

Boykinia major Boykinia major 

3 Cirsium 

callilepis 

Sedum 

oreganum 

Heracleum 

lanatum 

Senecio 

triangularis 

Heracleum 

lanatum 

4 Rudbeckia 

occidentalis 

Cirsium 

callilepis 

Hypericum 

perforatum 

Senecio 

integerrimus 

Senecio 

triangularis 

5 Potentilla 

gracilis 

Symphoricarpos 

mollis 

Anaphalis 

margaritacea 

Rudbeckia 

occidentalis 

Senecio 

integerrimus 

6 Agoseris 

heterophylla 

Potentilla 

gracilis 

Gilia capitata Hypericum 

perforatum 

Rudbeckia 

occidentalis 

7 Erigeron 

foliosus 

Phacelia 

hastate 

Perideridia 

gairdneri 

Gilia capitata Symphoricarpos 

mollis 

8 Senecio 

triangularis 

Agoseris 

aurantiaca 

Clarkia 

amoena 

Cirsium 

callilepis 

Cirsium 

callilepis 

9 Gilia capitata Brodiaea 

congesta 

Erigeron 

foliosus 

Brodiaea 

congesta 

Perideridia 

gairdneri 

10 Eriophyllum 

lanatum 

Erigeron 

foliosus 

Brodiaea 

congesta 

Potentilla 

gracilis 

Solidago 

canadensis 

 

Likewise, we have the top scoring plants for Bombylius major and Eristalis hirtus for 

each year and the aggregate dataset in Table 5 and Table 6 respectively. These two 

pollinators behave quite differently from Apis mellifera, but it is interesting to note that 

these three pollinators all share at least a few plants between their top 10 lists. For 

example, Gilia capitata and Sedum oreganum appear in some top 10 list for all three 

pollinators. 
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Table 5: The top 10 preferred plants for Bombylius major for each year and then for the data aggregated over all 

of the years. As with Apis mellifera, the most preferred plants for Bombylius major in the aggregate dataset over 

all years are all top scoring plants in other years. No new plants are introduced in the top 10 that have not been 

seen before. However, unlike Apis mellifera, Bombylius major’s list of preferences changes quite a bit every year. 

There is only one plant, Gilia capitata, that is scored highly over every year. 

 2011 2012 2013 2014 All Years 

1 Gilia capitata Gilia capitata Penstemon 

procerus 

Brodiaea 

congesta 

Brodiaea 

congesta 

2 Mimulus 

tilingii 

Stellaria 

crispa 

Gilia capitata Fragaria 

virginiana 

Gilia capitata 

3 Arctostaphylos 

nevadensis 

Navarretia 

divaricata 

Montia 

parvifolia 

Galium 

oreganum 

Arctostaphylos 

nevadensis 

4 Phlox diffusa Penstemon 

procerus 

Mimulus 

tilingii 

Gilia capitata Senecio 

integerrimus 

5 Sedum 

spathulifolium 

Arenaria 

capillaris 

Agoseris 

heterophylla 

Claytonia 

lanceolata 

Claytonia 

lanceolata 

6 Arenaria 

capillaris 

Vicia 

americana 

Sedum 

oreganum 

Senecio 

integerrimus 

Agoseris 

heterophylla 

7 Montia 

parvifolia 

Phlox diffusa Delphinium 

nuttallianum 

Penstemon 

cardwellii 

Mimulus 

tilingii 

8 Delphinium 

nuttallianum 

Cerastium 

arvense 

Potentilla 

gracilis 

Erigeron 

foliosus 

Phlox diffusa 

9 Calochortus 

subalpinus 

Eriophyllum 

lanatum 

Phlox gracilis Lupinus 

laxiflorus 

Arenaria 

capillaris 

10 Penstemon 

cardwellii 

Sedum 

oreganum 

Mimulus 

nanus 

Delphinium 

nuttallianum 

Montia 

parvifolia 

 

These top 10 lists also give us some insights about the behavior of these pollinators over 

the years. Apis mellifera seems to be quite stable because the many of the same plants 

appear over and over again in the top 10 lists over the years. However, Bombylius 

major’s behavior is much less predictable over the years. Eristalis hirtus, on the other 

hand, seems to be quite stable over the years, but then does not behave as expected in the 

aggregate dataset of all the years combined. In particular, Perideridia gairdneri and Aster 

ledophyllus show up in Eristalis hirtus’s top 10 list for all years, but neither shows up in 

the top ten list for a single year.  
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Table 6: The top 10 preferred plants for Eristalis hirtus for each year and then for the data aggregated over all 

of the years.  

 2011 2012 2013 2014 All Years 

1 Eriophyllum 

lanatum 

Eriogonum 

nudum 

Eriogonum 

compositum 

Cirsium 

callilepis 

Zigadenus 

venenosus 

2 Polygonum 

phytolaccaefolium 

Eriophyllum 

lanatum 

Erigeron 

foliosus 

Zigadenus 

venenosus 

Cirsium callilepis 

3 Erigeron foliosus Calochortus 

subalpinus 

Zigadenus 

venenosus 

Eriophyllum 

lanatum 

Polygonum 

phytolaccaefolium 

4 Zigadenus 

venenosus 

Zigadenus 

venenosus 

Eriogonum 

umbellatum 

Hypericum 

perforatum 

Eriophyllum 

lanatum 

5 Potentilla 

glandulosa 

Potentilla 

glandulosa 

Potentilla 

glandulosa 

Gilia 

capitata 

Calochortus 

subalpinus 

6 Aster ledophyllus Angelica 

arguta 

Perideridia 

gairdneri 

Potentilla 

gracilis 

Sedum oreganum 

7 Calochortus 

subalpinus 

Eriogonum 

umbellatum 

Potentilla 

gracilis 

Phlox 

gracilis 

Potentilla 

glandulosa 

8 Clarkia amoena Erigeron 

foliosus 

Sedum 

oreganum 

Rumex 

acetosella 

Erigeron foliosus 

9 Ligusticum grayi Ligusticum 

grayi 

Eriophyllum 

lanatum 

Ligusticum 

grayi 

Perideridia 

gairdneri 

10 Gilia capitata Gilia 

capitata 

Solidago 

canadensis 

Senecio 

integerrimus 

Aster ledophyllus 

 

Bootstrapping from the HJ Andrews Field Data 

A conclusion from our previous testing of the observations from HJ Andrews Forest is 

that we do not have enough data to have confidence in our results. To explore further, we 

used bootstrapping to generate 200 new datasets that come from the same distribution as 

the original datasets. On each new dataset, we calculated the score given to each plant for 

each year as well as all years and then calculated a 95% confidence interval for the scores 

of the plants. The following scatterplots (Figures 4 to 8) show the confidence intervals 

generated for each year. 
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Figure 4: This plot show the confidence 
intervals for the preference scores of the 

plants in 2011 ordered from the plants 
with the highest upper-bound of the 
confidence interval to those with the 

lowest upper-bound. What we notice is 
that most of the plants have very small 

confidence intervals. We also see that the 
confidence intervals of the scores for the 

top 11 plants do not overlap with the 
confidence intervals of the plants with 

lower scores. We also see that the more 
common plants such as Rudbeckia 

occidentalis and Rosa gymnocarpa have 
larger confidence intervals, as expected  
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Figure 5: This plot show the confidence 
intervals for the preference scores of the 

plants in 2012 ordered from the plants 
with the highest upper-bound of the 
confidence interval to those with the 

lowest upper-bound.  
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Figure 6: This plot show the confidence 
intervals for the preference scores of the 

plants in 2013 ordered from the plants 
with the highest upper-bound of the 
confidence interval to those with the 

lowest upper-bound.  
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Figure 7: This plot show the confidence 
intervals for the preference scores of the 

plants in 2014 ordered from the plants 
with the highest upper-bound of the 
confidence interval to those with the 

lowest upper-bound.  
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Figure 8: This plot show the confidence 
intervals for the preference scores of the 
plants in the aggregate dataset over all of 

the years ordered from the plants with 
the highest upper-bound of the 

confidence interval to those with the 
lowest upper-bound.  
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An interesting outcome of the bootstrapping is that the confidence intervals are very close 

to the same ranking that we received from the multinomial model in the previous section. 

Also, for many plants, the confidence interval is very small. This shows that we can be 

confident about the top ten ranked plants that we display in Table 4, Table 5, and Table 6. 

We also see that the plants that have confidence intervals with the largest ranges are 

plants like Rosa gymnocarpa, Rudbeckia occidentalis, and Aster ledophyllus.  

 

Traits Model 

Research shows that traits of flowers are important in how a pollinator visits them. For 

example, Apis mellifera is a larger insect and it is unable to hover above flowers. Due to 

these limitations, we would expect that Apis mellifera cannot visit flowers that are 

extremely small or flowers whose stems are unable to hold its weight. However, there 

may be many other floral features that may have an effect on pollinator preferences.   

Preliminary testing 

The first question we explored was if the traits of flowers really had any relationship to 

the score functions. To explore this, we took the actual usage data for Apis mellifera and 

fitted the score function using the multinomial model. We then fitted the weights for the 

traits to the score function using linear regression, following the two step approach 

described in the methods section. Our findings are shown in Table 1. This table shows 

that the traits that affect Apis mellifera’s preferences the most are Flower Form (value: 

“exclusion exists”), Closed (value: “open access”), and Platform (value: “platform”), as 

the weights for these traits are the greatest. Apis mellifera is a medium-to-large insect and 

cannot visit very small flowers, which explains why the flower form is important to this 

pollinator. This pollinator also does not have the ability to hover above flowers, 

explaining why Apis mellifera prefers flowers with a platform. Pollinators also require 

special skills to open closed flowers, so it makes sense that Apis mellifera prefers flowers 

that are open access.  

While the effects of the previous traits are expected, some of the traits (Pendant and 

Pollen Size) do not seem to have the expected sign. A plant with average pollen size 

should have a positive weight for Apis mellifera, because pollen of average size is the 

easiest to carry for this pollinator. Likewise, Apis mellifera does not have the skill to fly 

up from underneath a flower, so a suspended flower would be expected to have a 

negative weight. However, the standard errors for the coefficients of the traits are quite 

large compared to the coefficients themselves, so the true sign could be different from the 

sign of the fitted coefficient. The exceptions are the Closed feature which is significant at 

the 0.05 level and the Flower Form feature which is significant at the 0.1 level. 
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Table 7: Weights for the traits for Apis mellifera. The 𝑹𝟐 value for this test is 0.1696. 

Category Coefficient Standard Error 

Intercept -0.857089 1.322 

Biomass/flower 0.001021 0.0024 

Closed (open access)  1.070773 1.125 

Pendant (suspended) 0.099545 1.002 

Visible (not bright) -0.369354 0.766 

General Tube Shape (poor exclusion) -0.216557 1.051 

General Tube Shape (moderate exclusion) 0.814345 0.811 

General Tube Shape (severe exclusion) -0.638057 1.386 

Life Form (Perennial) -0.010474 0.687 

Flower Form (Exclusion exists) -1.059014 0.799 

Diel (flower open at night) 0.272519 0.807 

Pollen Size (average) -0.745493 0.605 

Platform (platform) 1.211060 0.752 

Platform (weak) -0.182099 0.989 

Exclusion Feeble (strong) 0.458899 0.881 

 

To explore the effect the traits have on the score function in more detail, we also created 

a few plots visualizing the fitted score function (using the regularized multinomial model) 

as the function of one trait at a time for Apis mellifera.  We see in Figure 3 that the 

biomass of the flower has a slight influence on the score, but not much. Figure 4 shows 

that the feebleness of the flower has a stronger influence on the score for the plant and 

verifies the result from the linear regression above. Figure 5 likewise shows that the 

general tube shape has more effect on the score function than biomass of the flower, but 

less than the feebleness of the flower. From these plots, we believe that the traits do 

explain some aspects of the preference scores. 
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Figure 9: This plot shows flower biomass against the score function. Most of the flowers in this study are quite 

small and have various scores. The large flower with a very low score at the bottom right of the graph skews the 

data. Without that point, biomass would have a stronger effect on the score function. 

 

Figure 10: This graph shows how the feebleness of the plant affects the score of the plant. Here we can see that 

plants with a feebleness value of "strong" correlates with higher scores. 
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Figure 11: This graph shows the score of the plant compared to the general tube shape of the plant. We see that 

moderate exclusion and severe exclusion pull the score of the plant down. 

 

Simulated Data Experiments 

To make sure the traits model behaves as expected, we generated a weight vector 𝑊 for 

the traits model and simulated a pollinator whose preferences phi are generated according 

to that weight vector. We then fit a new weight vector 𝑊̂ to the simulated data using the 

single combined model. We can compare 𝑊 to 𝑊̂ here and the results of the correlations 

are in row 1 of Table 8. We also calculated the score functions 𝜙 and 𝜙̂ using the 

equation: 𝑇 ∙ 𝑊 =  𝜙. We can now compare 𝜙 to 𝜙̂, and the results can be found in row 2 

of Table 8.  
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Table 8: 𝑾 is the true weight vector and 𝝓 is the corresponding true score function which we can calculate from 

𝑾. We then simulate data using 𝝓 and fit 𝑾̂ to the simulated data. 𝝓̂ was calculated using 𝑾̂ . The following 

values compare 𝝓̂ to 𝑾̂  and 𝝓 to 𝝓̂. The ranges show that there are some cases where 𝑾  and 𝑾̂ correlate very 

well, but there are other cases when they do not correlate well. 

 Spearman’s rho Pearson’s r 

Comparing 𝑾  to 𝑾̂ Mean: 0.594 

Deviation: 0.117 

Range: 0.411-0.857 

Mean: 0.811 

Deviation: 0.226 

Range: 0.330-0.999 

Comparing 𝝓 to 𝝓̂ Mean:  0.882 

Deviation:  0.085 

Range: 0.800-0.992 

Mean:  0.999 

Deviation:  0.001 

Range: 0.998-1.000 

 

 

 

Figure 12: This plot shows the known (true) weights for the traits compared to the fitted (calculated) weights. 

The weights estimated by this model correlate well with the true trait coefficients for the pollinator. The model 

generally does very well except for a few points. The model was tested on three weight vectors that were 

arbitrarily assigned. The color of each point represents the true weight vector that was used. We see that two of 

the three weight vectors are estimated very well by the model.  
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We see in Table 8 that when we compare 𝑊  and 𝑊̂, we sometimes get a very good 

correlation, and sometimes get a correlation that is not as good. Especially with Pearson’s 

r, we see a large range of correlation values. However, when we translate the weight 

vectors to 𝜙 and 𝜙̂, we see that the correlations improve. To explore this effect more, we 

used the field interaction data to test the traits model  

Experiments on the HJ Andrews Data 

Using the traits model, we report the fitted weight vectors for Apis mellifera, Bombylius 

major, and Eristalis hirtus in Table 9. Ultimately, these weights do not seem to correlate 

with what we know about the pollinators themselves. For example, Apis mellifera should 

be attracted to flowers with strong stems (the feebleness trait) and should avoid flowers 

that are suspended (the pendant trait). Many of the weight values seem like they do not 

have the correct sign.  

Table 9: This figure displays fitted weights for each trait and value combination for Apis mellifera, Bombylius 

major, and Eristalis hirtus fitted using the traits model on the field interaction data.  

Category Apis mellifera Bombylius major Eristalis hirtus 

Intercept -9.881 1.301 -5.738 

Biomass/flower -1.245 4.926 -1.151 

Closed (open access)  3.295 1.329 7.397 

Pendant (suspended) 2.786 -2.462 -3.474 

Visible (not bright) -3.256 -9.496 3.540 

General Tube Shape  

(poor exclusion) 

-3.354 3.997 -8.064 

General Tube Shape 

(moderate exclusion) 

9.757 3.863 -1.308 

General Tube Shape  

(severe exclusion) 

6.144 3.428 -1.174 

Life Form (Perennial) 7.188 9.902 -2.628 

Flower Form (Exclusion 

exists) 

-7.743 -2.695 -6.809 

Diel (flower open at night) 8.001 -2.269 3.518 

Pollen Size (average) -2.103 -1.802 -1.237 

Platform (platform) -6.588 -7.794 -2.861 

Platform (weak) -2.735 1.275 9.598 

Exclusion Feeble (strong) -1.500 -4.978 -5.211 
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Bootstrapping from the HJ Andrews Dataset 

We applied the bootstrapping technique with the traits model with Apis mellifera to get a 

better understanding of the amount of error we have for the traits. We see from Figure 13 

that the confidence intervals for the traits are also extremely small. This does not seem 

intuitive, so before we make any more conclusions on the traits model, more 

experimentation needs to be done. The confidence intervals may be extremely small 

because there is not much variation in the bootstrapped datasets. We may have to look 

back to see if there is a problem with the method we use for the bootstrap. 

 

Figure 13: This figure shows the confidence intervals for the weights fitted to the field interaction data for Apis 

mellifera over the aggregate dataset over all years. We created 200 bootstrapped datasets. We see that the 

confidence intervals for the traits are very small. This can mean one of two things: 1) the weights predicted by 

the traits model are very accurate or 2) the bootstrapped datasets are not enough to generalize on the true 

interaction distribution of Apis mellifera. 
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Comparing the Multinomial Model with the Traits Model 

To compare the multinomial model and the traits model, we first took one pollinator (we 

used Apis mellifera, Bombylius major, and Eristalis hirtus) and fitted a score function 

𝜙(1) for the field interactions by the pollinator. We then used the traits model to fit a 

weight vector 𝑊 to the same field interactions. These weights are recorded in Table 9. 

Next we found the score function 𝜙(2) by using  𝑇 ∙ 𝑊 =  𝜙(2). We then compared 𝜙(1) 

and 𝜙(2) using Kendall’s 𝜏, Spearman’s 𝜌, and Pearson’s 𝑟 correlation statistics. We also 

used the likelihood ratio test to compare the likelihoods of the field interaction data when 

the pollinator used 𝜙(1) and when the pollinator used 𝜙(2). Our results are summarized in 

Table 10. 

In Table 10, we see that 𝜙(1) and 𝜙(2) do not correlate well, so the two models are 

behaving quite differently. However, when we perform a likelihood ratio test on the two 

resulting score functions 𝜙(1) and 𝜙(2), we find that the likelihoods of these score 

function are not significantly different. The data are not sufficient to reveal any difference 

in these two models.  We cannot draw the stronger conclusion unless we also have some 

way of measuring the power of the test. 

Table 10: Here we fit 𝝓(𝟏)
to the field interactions for the pollinator. We then fit 𝑾 to the field interactions for 

the pollinator and calculate 𝝓(𝟐)
 using 𝑾. We then compare 𝝓(𝟏)

 to 𝝓(𝟐)
 using Spearman’s 𝝆, Pearson’s 𝒓, and 

the likelihood ratio test for each pollinator. 

 Apis mellifera Bombylius major Eristalis hirtus 

Spearman’s 𝝆 0.209 0.110 0.276 

Pearson’s 𝒓 0.207 0.119 0.389 

Likelihood ratio test 

𝜦 

-23130.44 -1636.032 -1558.958 
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Discussion 

Conclusions 

In this study, we created two models to simulate and determine the preferences of 

pollinators: the multinomial model and the traits model. We find that the multinomial 

preference model performs better than a model that has no preferences and only uses the 

abundance of the flowers. However, the multinomial model does not explain the behavior 

of pollinators entirely. The traits model is also not able to account very well for the fitted 

preferences. 

The regularized multinomial preference model explains the visit behavior of several 

pollinator species much better than a model that assumes that a pollinator has no 

preferences. When we evaluated the unregularized multinomial model on the simulated 

data, we found that the model was able to predict only the true score distribution for the 

“normal” simulation well. However, using regularization improved the multinomial 

model. Comparing the likelihood of a model without any preferences and the likelihood 

of the fitted multinomial preference model resulted in a likelihood ratio test statistic 

𝛬 = 31483. 𝛬 is statistically significant and shows the preference model works better 

than a model without preferences.  

While we show that the multinomial model is able to recover the preferences of the 

pollinator from the simulated data, based on the goodness-of-fit test on the field data, 

there are still several aspects of pollinator behavior that are not accounted for by the 

multinomial preference model. When evaluating the multinomial preference model on the 

field data using a 𝜒2 goodness of fit test, we find 𝜒2 is a statistically significant value. 

This shows that the observed numbers of interactions are significantly different from the 

expected numbers of interactions. One example of pollinator behavior that is not 

explained well is the assignment of scores by the multinomial model for rare plant 

species. For example, when we look at Apis mellifera’s preferences over the years to see 

how the preferences changed, we see that Hydrophyllum occidentale appears the top 

rated plants list only in 2011, but also appears as the top rated plant in the aggregate data 

set. However, Hydrophyllum occidentale is a very rare plant and only appears in the same 

meadow-watch as Apis mellifera once. This lack of information for some interaction pairs 

could explain why the p-values for the goodness of fit tests on the observed data were so 

low. 

We also wanted to explore how we can predict the observed interactions using the traits 

of the flowers. This model does not assign scores to each plant. Instead it directly fits the 

weights on the traits. This steers the multinomial model toward preferences that could be 

explained by the traits. However, we find that the traits model does not seem to be 



 

 

37 

 

finding the true weight vector for Apis mellifera and other insects because the values of 

the weight vector do not seem to have the expected signs let alone the values. Also, a 

likelihood ratio test between the score function fitted to the multinomial model and the 

traits model (𝛬 = −23130 with 977 df.; 𝑝 = 1) shows us that the traits model and the 

multinomial model do not behave very differently. We may have to look into other 

approaches to improve the model even more. 

Next Steps 

The motivation for this study was to find the plant preferences of a pollinator so that we 

can study the effects of losing or gaining plant species on plant-pollinator interactions. 

However, while we have shown that we can take plant-pollinator interaction data and the 

traits of the plants to find the score function for one pollinator, more work is needed to 

make the multinomial model predictive and to adapt this model to a plant-pollinator 

network (with multiple species of pollinators instead of just one).   

One idea to make the multinomial model predictive is to incorporate the idea of 

burstiness to explain what the multinomial model is unable to. In the models considered 

for this study, we do not account for the sequence in which the interactions take place. In 

essence, we assume that the insect flies up above the flower after each visit and randomly 

selects a new flower. However, what if once the pollinator finds a flower it gives a high 

score to, the probability of the pollinator visiting that same plant species is higher? This 

idea is called burstiness and could explain non-random plant-pollinator interactions as 

well as the effects of competition with other pollinator species. This model is detailed in 

Appendix B.  

Another approach to make the model more predictive is to use the traits data and the 

interaction data to create a decision tree that classifies the plant as likely to be visited by 

the pollinator or not likely to be visited by the pollinator. Using this approach, we can 

find the combinations of traits that attract the pollinator the most. This could also address 

the problem we have with the current traits model with the weights vector containing un-

intuitive values for some of the traits of the flowers.   

We would also like to expand the multinomial and traits models so that they can handle 

multiple pollinator species conducting interactions during the same meadow watch. In the 

multinomial model, we find the likelihood of the set of visits one pollinator makes. To 

expand this to multiple pollinator species, we would simply need to multiply the 

likelihood of the observed visits of all pollinator species.  One of the difficulties we might 

encounter as we expand to multiple pollinator species is keeping the model density-

independent so that the number of plants or pollinators does not affect the behavior of the 

model. With the current multinomial and traits models, we account for the density of the 
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flowers. However, when we incorporate multiple pollinators, we need to account for the 

density of the pollinator populations as well because in our current dataset, we do not 

have the ability to count the exact number of pollinators in the meadow during the 

meadow watch. One idea would be use the number of visits observed as a proxy, but we 

would not be able to differentiate between pollinators that visit many different flowers 

and pollinators that are populous. This would affect the density independence of the 

model. 

In this study, we have seen that the model gives different results depending on how much 

data is observed. The results from an aggregate over all the years are very different from 

the results over one year. More work should be done on analyzing how these results vary 

due to the amount of data.  

There are also many other ways of dealing with preference. One model that might be 

interesting to explore in the context of plant pollinator interactions is the Preference-

Aversion model introduced by Franco (2013). This model uses a distinction between 

biological need and a pollinator’s desire to learn the preferences of a pollinator in the 

presence of competition and other non-ideal situations. A model like this could help us 

account for competition and other challenges a pollinator faces in addition to their desire 

to visit a particular flower.
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Appendix A: The Binary Preference Model 
 

This appendix summarizes the preliminary studies done with the binary preference 

model. This model was of interest to us because of the sampling errors that can occur 

with field observations of plant-pollinator interactions. The presence or absence of an 

interaction may be more reliable because rare pollinators are only observed a few times 

and we cannot determine if the observations we see are due to specialization or due to the 

probability of observing the interaction. We conducted the experiments with this model 

on synthetic data so that we would know exactly how the model performed. 

Unfortunately, this model seems to work only with generalist pollinators. This model is a 

special case of the multinomial preference model introduced in the Methods section 

where the interaction counts can only be 0 or 1.  

A Multinomial Preference Model 

Multinomial Model 

In this model, we are trying to determine which plants a pollinator prefers from the field 

study data. This model is a statistical approach, and our goal in this model is to find ϕj, 

which is the score function for pollinator j. We assume that all the interactions during a 

meadow watch are performed by an individual pollinator of species j.  

First consider the set 𝑋 =  {1. . . 𝑁} which ennumerates all plant species. On some 

meadow watch t, only a subset of 𝑋 is available. The availability of plants at meadow-

watch t can be denoted by a matrix 𝐴𝑡 of size 𝑁 x 1 where the number of flowers of plant 

species 𝑖 is denoted by 𝐴𝑡(𝑖) ∈ {0, 1} On this meadow-watch, some pollinator 𝑗 makes 𝐾𝑡 

visits to flowers, which we will denote as a collection of visits 

𝑉𝑡  =  {𝑣𝑡 , 𝑣2, … , 𝑣𝑘 , … , 𝑣𝐾}.  In this collection, 𝑣𝑘  ∈  {1, … , 𝑁} and 𝑣𝑘 represents the 𝑘th
 

plant that was visited by pollinator 𝑗 on meadow-watch 𝑡. Please note that the notation 𝑣𝑘 

is for the ease of explaining this model. The order of the K visits is arbitrary. 

The pollinator also has a score for each plant which we will denote as the score 

function ϕ𝑗 ∈ ℝ. This function gives a real-valued score to plant 𝑖 indicating the 

pollinator 𝑗’s preference for 𝑖. Then the probability that pollinator 𝑗’s 𝑘th
 visit was to 

plant 𝑖 is: 

𝑃(𝑣𝑘 = 𝑖 | 𝐴𝑡 , ϕ𝑗) =  
𝐴𝑡(𝑖) exp (ϕj(𝑖))

∑ 𝐴𝑡(𝑖′) exp (ϕj(𝑖′))𝑁
𝑖′=1

 . 
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From here on, we will make the dependence of the function 𝑃(𝑣𝑘 = 𝑖 | 𝐴𝑡 , ϕ𝑗) on 𝐴 and 

ϕ𝑗 implicit and will refer to this function as 𝑃(𝑣𝑘 = 𝑖 ). Now, we know that pollinator 𝑗 

makes a sequence of visits on meadow-watch 𝑡, 𝑉𝑡. Then the number of times 𝑗 visits 𝑖 is 

𝑁𝑡(𝑖) = ∑  𝐼(𝑉𝑡(𝑘), 𝑖)𝐾𝑡
𝑘=1  where 𝐼(𝑉𝑡(𝑘), 𝑖) is the indicator function. The indicator 

function is equal to 1 when  𝑉𝑡(𝑘) is equal to 𝑖 and 0 otherwise. The likelihood of this 

particular collection of plants visited by pollinator 𝑗 on meadow-watch 𝑡 is: 

𝐿(𝑉𝑡; ϕ𝑗) =
𝐾𝑡!

𝑁𝑡(1)! … 𝑁𝑡(𝑁)!
∏(𝑃(𝑣𝑘 = 𝑖)𝑁𝑡(𝑖))

𝑖

 . 

 

Over the entire summer, the likelihood of the observed data is: 

𝐿(𝑉𝑡; ϕ𝑗) = ∏ (
𝐾𝑡!

𝑁𝑡(1)! … 𝑁𝑡(𝑁)!
∏(𝑃(𝑣𝑘(𝑗) = 𝑖)𝑁𝑡(𝑖))

𝑖

)

𝑡

. 

As the resulting likelihood values will be extremely small, we will want to work in log-

space. Therefore, we will use the loglikelihood of the observed data: 

𝐿𝐿(𝑉𝑡; 𝜙𝑗) = ∑ (log (
𝐾𝑡!

𝑁𝑡(1)! … 𝑁𝑡(𝑁)!
) + ∑ 𝑁𝑡(𝑖)log (𝑃(𝑣𝑡(𝑗) = 𝑖))

𝑖

)

𝑡

 

𝐿𝐿(𝑉𝑡; 𝜙𝑗) = ∑ (log(𝐾𝑡!) − (log (𝑁𝑡(1) + ⋯ + log (𝑁𝑡(𝑁))

𝑡

+ ∑ 𝑁𝑡(𝑖)log (𝑃(𝑣𝑡(𝑗) = 𝑖))

𝑖

) 

Binary Model 

Because the data in our data set does not tell us the frequency at which a pollinator visits 

a plant—only that it visits the plant—we must change the model because we only know if 

the interaction occurred or not. With binary data, the calculated Nt(i) would be either zero 

or one. Therefore we will call this the usage of a plant i by pollinator j Ut(i) ∈ {0, 1}. We 

can liken Ut(i, j) to a function that returns 1 if pollinator j visits plant i in the sequence Vt 

and 0 if j does not visit i.  

 

Using this information, we can change the probability function to: 
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𝑃(𝑈𝑡(𝑖, 𝑗) = 1 | 𝐴𝑡 , ϕ) =  
𝐴𝑡(𝑖) exp(ϕ(𝑖, 𝑗))

∑ 𝐴𝑡(𝑖′) exp(ϕ(𝑖′, 𝑗))𝑁
𝑖′=1

 

 

Now we must change our likelihood estimate accordingly. Kt = U 

𝐿(𝑉𝑡; ϕ) = ∏(
𝐾𝑡!

𝑁𝑡(1)! … 𝑁𝑡(𝑁)!
∏(𝑃(𝑣𝑘(𝑗) == 𝑖)𝑁𝑡(𝑖))

𝑖

))

𝑡

 

𝐿(𝑉𝑡; ϕ) = ∏((∑ 𝑈𝑡(𝑖,  𝑗)

𝑡

) ! ∏(𝑃(𝑣𝑡(𝑗) == 𝑖)𝑈𝑡(𝑖, 𝑗))

𝑖

)

𝑡

 

 

For the synthetic data analysis, we will use the log likelihood function to avoid precision 

errors: 

𝐿𝐿(𝑉𝑡; 𝜙) = ∑(log ((∑ 𝑈𝑡(𝑖,  𝑗)

𝑖

)) ! + ∑ 𝑈𝑡(𝑖,  𝑗)log (𝑃(𝑣𝑡(𝑗) == 𝑖)

𝑖

))

𝑡

 

 

Synthetic Data Analysis 

The Algorithm 

We tested our model on synthetically generated data. This is the algorithm with which we 

generated data and analyzed the model: 

1. Choose the score function for the pollinator. 

2. Calculate the probability a pollinator would visit each plant in the meadow 

3. Generate random use data for all the meadows using the probability vector. The 

generated data was frequency. To do this we used the function rmultinom() in R. 

Here we must also specify the number of visits the pollinator during one sampling 

unit. 

4. Truncate frequency use data to binary use data. 

5. Use gradient descent to find the optimal values of the parameters using binary use 

data. We optimized the log likelihood of the interactions. We utilized the optim() 

function in R to perform the gradient descent. 

6. Compare the results with the original score distribution using a rank correlation 

method. 

 

We hard-coded 4 different score functions: 

• Normal: a generalist pollinator with some preference 

• Uniform: a generalist pollinator with no preference 

• True-special: a specialist that prefers one plant above all others 

• Half-special: a specialist that prefers a few plants much more than all others 
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We required the score functions to calculate the probability that a plant will be visited. 

We also required the availability of the plants for each meadow watch which we pulled 

from our existing data. 

 

To compare the results from optim() and the original score function, we chose to use 

either Spearman’s rho or Kendall’s tau rank correlation coefficients. Spearman’s rho is 

better at detecting large discrepancies in the two sets whereas Kendall’s tau is more 

accurate with small sample sizes. Spearman’s rho is generally higher than Kendall’s tau. 

For our purposes, I feel that Spearman’s rho will be better metric as small discrepancies 

in ranking are not too important.  

 

We were unable to use the R rank correlation function with our uniform distribution. 

The Experiments 

We had two variables that we changed: the number of visits the pollinator makes at one 

time and the score function used by the pollinator. We had 4 options for the number of 

visits: 1, 10, 50, and 100. We had 3 options for the score function: normal, true special, 

and half special. We conducted 15 trials for each combination resulting in a total of 180 

trials.  

 

Figure 1 shows the results of all the trials for each the original score functions. Both the 

true special and half special distributions have a very small range and have a low 

correlation coefficient. On the other hand, the normal score function has a very wide 

range and also has a very high correlation coefficient at times. To see where this model 

works the best, I took the data associated with just the normal score function and split it 

up by the number of visits, resulting in Figure 2. The highest median rank correlation 

occurs when the number of visits is 10.  



 

 

45 

 

  
 

Conclusions 

This model does not work well with many of different types of score functions. However, 

it works rather well with a generalist pollinator which has some preferences (i.e. the 

normal score function). Also, the model seems to work best when the number of visits 

made by a pollinator at one time is about 10. We believe that when there are not enough 

visits, we do not have enough information to accurately predict the preference rankings. 

However, when we have too many visits, rare interactions may be seen, and the 

truncation from frequency to binary doesn’t give us the information about whether a 

certain interaction is rare or not. This would also drop the correlation with the original 

rankings.  

 

This model should work well when analyzing species such as Bombus mixtus which are 

known to visit many plants. Bombus mixtus has between 10-50 interactions in a meadow 

for most meadows. However, there are a few meadows there this pollinator has had more 

interactions. While I was able to calculate the score function for Bombus mixtus, I have 

not yet implemented cross-validation to evaluate the score function. 
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Appendix B: The Burstiness Model 

The Model 

The multinomial model and traits model described in the Multinomial Model section treat 

each bee-flower visit as independent. While this model may explain much about the 

behavior of insect pollinators according to their preferences, the sequence of visits the 

pollinators make may be affected by competition from other pollinators as well as the 

presence of predators. 

To incorporate these factors into the model, we use “burstiness”. The idea behind 

burstiness is to have a transition probability between each visit. Like in the multinomial 

model and traits model, here we will assume that a single pollinator is making all of the 

visits for a single meadow watch. Suppose the plant species can be modeled as consisting 

of a set of 𝐶 species groups: {𝐺1, … , 𝐺𝐶}. At each visit, the pollinator has two choices for 

the next visit:  

1. Stay in the same group 

2. Leave the group and randomly choose the next group 

We will model the pollinator’s behavior as follows: 

1. Choose a group 𝑔 to visit 

2. Choose a flower from species 𝑗 ∈ 𝑔 according to the multinomial model (but now 

restricted to the flowers belonging to this group that are available on day 𝑡 in 

meadow 𝑚) 

3. Visit the flower 

4. With probability 𝛿 go to step 1 and choose a new group. Else go to step 2 and stay 

with the current group. 

The loop in steps 2-3-4 creates “burstiness”. 

Now let’s construct the probabilistic model. For step 1, we can apply the multinomial 

preference model and then compute the probability of each group. Hence, the probability 

of pollinator i selecting group 𝑔 is 

𝑃(𝑔|𝜙) = ∑ 𝑃(𝑣𝑘 = 𝑖 | 𝐴𝑡, ϕ)

𝑗∈𝑔

 

Now suppose we had observed the individual visits Vt = {v1, v2, … , vKt}, and let 

𝑣 = 1, … , 𝐾 index those visits. Let 𝑔𝑘 denote the group to which species 𝑣𝑘 belongs. 

Then the likelihood of 𝑉𝑡 is 
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𝐿(𝑉𝑡|𝜙, 𝛿) = 𝑃(𝑔1|𝜙)𝑃(𝑣1|𝑔1, 𝜙) ∏ 𝑃(𝑔𝑘|𝑔𝑘−1)𝑃(𝑣𝑘|𝑔𝑘, 𝜙)

𝑉𝑡

𝑘=2

 

where the transition probability is defined as follows 

𝑃(𝑔𝑣|𝑔𝑣−1) = {
(1 − 𝛿) + 𝛿 𝑃(𝑔𝑣|𝜙) if 𝑔𝑣 = 𝑔𝑣−1

𝛿 𝑃(𝑔𝑣|𝜙) otherwise.
 

To simplify the model, we start by assuming that each plant species 𝑗 belongs to exactly 

one group 𝑔. Now, because each group only has one plant, the probability of choosing a 

certain plant in a group is always 1. We can remove the terms 𝑃(𝑣1|𝑔1, 𝜙) and 

𝑃(𝑣𝑘|𝑔𝑘, 𝜙) to simplify the likelihood to: 

𝐿(𝑉𝑡|𝜙, 𝛿) = 𝑃(𝑔1|𝜙) ∏ 𝑃(𝑔𝑘|𝑔𝑘−1)

𝑉𝑡

𝑘=2

 

We can view this as a simulation. The bee flips a coin with probability 𝛿 of heads. If it 

comes up heads, then the bee draws a “new” group according to 𝑃(𝑔𝑡,𝑣|𝜙). If the coin 

comes up tails, the bee stays with the current group. Hence, if the state did not change, 

this could be either because of the 1 − 𝛿 probability of tails or because of the probability 

𝛿 of heads followed by randomly drawing the same group again. If the state does change, 

it reflects heads followed by drawing a different group. 

In practice, we only observe the number of visits {𝑁𝑡,𝑚(𝑗)}
𝑗=1

𝑁
, so the likelihood must 

sum over all unique permutations 𝒫(𝑉𝑡): 

𝐿(𝑁𝑡|𝜙, 𝛿) =
1

𝑁!
∑ 𝐿(𝜋(𝑉𝑡)|𝜙, 𝛿)

𝜋∈𝒫(𝑉𝑡)

 

A Proposed Algorithm 

In the formula above, 𝜋(𝑉𝑡) is a unique permutation of the original sequence of flower 

visits. To evaluate this likelihood efficiently, we propose a dynamic program: 

change use matrix U to a vector of plant visits V 

Note: the ordering of V does not matter here 

list = distinct elements of V  

lh = calculate the probability of the elements in list.  

Note: At this point we have distinct permutations for one visit 

 

for visit in 2:total_use: 

list_temp = empty vector 
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lh_temp = empty vector 

for entry in 1:length(list): 

v_temp = V - elements present in list[entry] 

for distinct plant in v_temp: 

append [list[entry], plant] to list_temp 

calculate likelihood of this permutation by multiplying transition prob with 

lh[entry] and append to lh_temp 

list = list_temp 

lh = lh_temp 

 

Total_Likelihood = sum(all elements of lh) 



 

 

 

 

 


