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Introduction

Motivation

Environmentalists and policy makers are worried about the decline of insect pollinators
(such as bumblebees, moths, and butterflies) (Tylianakis, 2013), which are important to
both the agricultural industry and many ecosystems (Tylianakis, 2013; Aizen, et al.,
2009). These pollinators are disappearing, and it is neither a local phenomenon nor a
single species. Populations of wild pollinators are decreasing around the world due to
changing land use (Fitzpatrick, et al., 2007; Biesmeijer, et al., 2006). Ecologists predict
that the loss of pollinators will affect plant biodiversity (Tylianakis, 2013). Pollinators are
also important in agriculture because around 30% of the plants we eat require pollination
in order to produce fruits and vegetables (Tylianakis, 2013). As wild pollinator
populations decrease, we must supplement them with managed honeybee hives.
However, this comes with a price as studies have shown that the yield for these plants
increases when they are pollinated by wild pollinators (Aizen, et al., 2009).

Experts are also concerned about how plant extinctions will affect insect pollinator
populations, and there is evidence that pollinator extinctions are followed by plant
extinctions (Biesmeijer, et al., 2006; Aizen, et al., 2012). However, there is also evidence
suggesting that pollinators, even ones that have been observed exclusively interacting
with only a few plants, can adapt to changing plant species distributions (Tylianakis,
2013). Understanding more about how pollinators choose the flowers they visit will help
us predict how plant-pollinator networks will respond to changes in the distribution and
abundance of the species within the network.

Objective

The objective of this study is to create a method to identify a ranking of plant preferences
for a pollinator given field observations of plant-pollinator interactions and to determine
how floral traits affect the preference for each plant. To do this, we developed a
probabilistic model to identify the preferences in interaction networks under the
assumption that the plant-pollinator interactions can be modelled using only the
frequency of the interactions. We used the data collected at the H.J. Andrews
Experimental Forest by students from the Eco-Informatics Summer Institute (Pfeiffer,
2011-2014) and explored an extension of this model to determine if the traits of the
flowers affect the preferences of a pollinator. In this thesis, we will focus on identifying
the preferences of pollinators that interact with a large variety of plant species.

We applied these models to analyze plant-pollinator observations collected in the field.
These models take steps towards creating models that will be able to predict plant-
pollinator interactions in the case of the extinction of existing plants in a network, the



introduction of invasive species of plants to the area, or the restoration of an extirpated
plant to an area.

Background Information

To understand the behavior of pollinators (e.g., to determine their preferences), we must
first understand the background of plant-pollinator interactions. The relationship between
insect pollinators and flowers is mutualistic, as flowers need to be pollinated and insects
use flowers as a source of food, so plants and pollinators co-evolved. To ensure that they
can gather enough food, pollinators do not want to compete with other species, so there is
a push to focus only one plant species. However, if the pollinator becomes dependent on
this one plant species, and this species becomes extinct, the pollinator may also be in
danger of going extinct. The same is true for plants and pollination. A generalist plant or
pollinator is one that interacts with many species of the other group. A specialist plant or
pollinator only interacts with one or few species of the other group.

There are a few species that are well known to be truly specialist pollinators (such as
species in the genus Dufourea—each species specializes on a different flower)
(Moldenke, 2015). However, much specialization occurs due to the physical
characteristics of flowers that limits some pollinators from visiting. For example, some
flowers hang suspended which does not allow the pollinator to land on the flower and the
pollinator must fly into the flower (Moldenke, 2015). Collecting nectar and pollen in this
manner takes energy and certain skills, which not all pollinators have. As another
example, some plants have petals closed around the rewards (pollen and nectar), so the
pollinators for those plants need to have the skill to open the flower to access the rewards.
In cases where unrelated plants share similar pollinators and physical attributes, the
shared physical attributes are called pollination syndromes. We have some evidence
supporting pollination syndromes, but we need more critical examination of this theory
(Johnson & Steiner, 2000).

Many plants, such as plants that are highly dispersed and perennials, benefit greatly by
being pollinated by specialist pollinators. Plants that are highly dispersed would probably
specialize on one pollinator that is loyal to that plant species so that the stigmas are not
clogged by pollen of more abundant plants (Johnson & Steiner, 2000). The perennials in
this study are highly dispersed, but perennials also live over multiple years, so they have
multiple chances for pollination and the opportunity to specialize on just a few loyal
insects.

Other plants may benefit from being pollinated by generalist pollinators (Johnson &
Steiner, 2000). Annual plants encourage generalist pollinators (Johnson & Steiner, 2000)
2



because they only have one chance at pollination and attracting as many pollinators as
possible means more chances of pollination in that short period of time. Annuals also
vary greatly in abundance year to year, so pollinators are unlikely to specialize on these
plants (Moldenke, 2015). Abundant plant species and plant species with separate sexes
are also predicted to be pollinated by many different pollinators, but especially generalist
pollinators (Johnson & Steiner, 2000).

While we have many studies on pollination syndromes and the specialization of plants
and pollinators, we must remember that some pollinators could be labeled incorrectly as
specialists due to sampling error. If a pollinator is very rare, researchers will observe only
a few of the interactions it makes. If these few interactions are with the same plant
species, the pollinator might be labelled a specialist without enough evidence (Bluthgen,
2010). There are many methods to determine if a species was present in the field but was
not detected, from statistical models (MacKenzie, et al., 2002) to machine learning
models (Hutchinson, et al., 2011). With the data collection protocol followed for the data
used in this thesis, the previous methods are not needed. However, this shows that the
abundance of plants is also critical when trying to model plant-pollinator interactions. If a
plant is very abundant, a generalist pollinator might visit this plant even if it prefers a
rarer plant much more.

Competition also plays a huge role in field studies like the one used for this study. If a
flower is open both at night and in the day, many nocturnal pollinators (such as moths)
may visit the flower at night leaving less nectar for the pollinators who visit during the
day. Researchers during this field study also noticed that bumblebees and honeybees tend
to start their foraging earlier in the morning than solitary bees. This could mean that
solitary bees visit flowers with less reward because the nectar from other flowers was
already consumed by the social bees (Pfeiffer, 2011-2014). This would cause the solitary
bees to behave as if they are specialized in flowers that bumblebees and honeybees do not
like.

Other pollinator preferences have also been studied such as flower symmetry, flower
color, and corolla (petal) shape (Gomez, et al., 2008; Moller & Sorci, 1998; Rodriguez, et
al., 2004). These studies show that the corolla shape is a very important factor in the
preferences of pollinators. However, corolla shape could be important only due to other
related factors. For example, flying and hovering over a flower consumes much of a
pollinator’s energy. Therefore, corolla shape may only be important because the petals
form a platform for the pollinator to land on or allow the pollinator to walk to the next
flower. Researchers have also hypothesized that corolla size and shape could give the
pollinator a clue as to the reward from visiting the flower. Flower color has been a
popular target for pollinator preference studies (especially bees). The theory is that



brightly colored flowers (whites, yellows and oranges), reflect ultraviolet rays making
them more visible to insects. Reds and dark colors are theoretically not as visible to
pollinators (Moldenke, 2015), but studies of German wildflowers and lowland tropical
plants show that flower color by itself is not significantly correlated with pollinator
preferences (Johnson & Steiner, 2000).

Evolutionary theory states that if pollinators are specialists, and the plant they depend on
becomes extinct, the specialist pollinator will also go extinct (Biesmeijer, et al., 2006;
Memmott, et al., 2007; Aizen, et al., 2012). However, some studies suggest that declines
of specialist populations are not caused by simple food-plant specialization (Fitzpatrick,
et al., 2007) and others find that the specialist pollinators are the ones acquiring new plant
interactions (Tylianakis, 2013). Field studies today contain interactions that are not
recorded in historical studies and tend to involve species with previously narrow diets
(Tylianakis, 2013). This could mean that even specialist pollinators can adapt to human
alterations of the landscape, such as introduction of foreign or invasive species.
Ultimately, pollinator preference modeling could aid conservation biologists by finding
which plant, if any, could be introduced to an area to best help a struggling pollinator
species.

Because the quantity and quality of pollination experienced by plants is also declining
(Tylianakis, 2013), a few species of generalist pollinators is not enough to keep plant
biodiversity intact. For example, the managed honeybee (Apis mellifera) populations are
now commonly being raised on agricultural fields to supplement pollination normally
performed by wild pollinator populations (Tylianakis, 2013; Aizen, et al., 2009).
However, agricultural crops that require pollination yield more produce when pollinated
by a variety of wild pollinators regardless of the presence of Apis mellifera (Aizen, et al.,
2009; Tylianakis, 2013). Experts found that honeybees are not equally efficient at
pollination of different plant species even though they frequently transport a lot of pollen
(Tylianakis, 2013).

Relative to this thesis, there are two relevant approaches to the study of insect pollination:
network analysis and modelling and preference modelling. In network analysis, plant-
pollinator interactions are modeled as bipartite graphs (Bascompte, et al., 2003). Bipartite
graphs have two disjoint sets of nodes and connections only exist between nodes in
different sets. No connections occur between two nodes in the same set. In this case, plant
species and pollinator species make up the two sets of nodes and the interactions between
plants and pollinators are translated to connections. Bipartite networks are used to study
plant and pollinator network structure. Research on these networks has shown that in
large field studies, generalist pollinators visit nearly all plant species and most specialist
pollinators visit plants species that are already visited by many generalist pollinators



(Bascompte, et al., 2003; Moldenke, 1979). Network analysis, while not used in this
thesis, could be helpful as we grow our models from looking at a single pollinator species
to multiple pollinator species.

Another modelling approach is to model the behavior of pollinators due to apparent
preferences. One study examined how pollinator preferences for wild flowers in field
margins were affected by agricultural monocultures (Rands & Whitney, 2010). The
model created in this study found that pollinators located within agricultural fields
preferred the wild flowers in the field margins as the density of the wild flowers
increased. This study was based on the idea that pollinators show density—dependent
preferences, sometimes even avoiding plants that are unfamiliar (Rands & Whitney,
2010). We will present a new modelling approach to pollinator preferences in a field of
wild flowers without the influence of agriculture.



Materials and Methods

Field Study Data

The data analyzed in this study is from a field study conducted by Vera Pfeiffer in the
summer of 2011 and by the students at the Eco-Informatics Summer Institute (EISI) over
the summers of the years 2012-2014. The field observers recorded plant and pollinator
interactions in 18 meadows in the H.J. Andrews Experimental Forest, involving 109
plants and 293 pollinators over 4 years. During each year, observations were collected at
a subset of the 18 total meadows. Each meadow was visited by researchers about 5 times
each summer. Each visit is called a meadow-watch. For example, Figure 1 shows the
interactions between plants and pollinators during one meadow watch.
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Figure 1: This figure shows the plant-pollinator interactions recorded at the Lookout meadow, watch 2 in 2014.
Each row represents a plant that was available during the meadow-watch and each column represents a
pollinator that was observed interacting with a plant during the meadow-watch. The darker a cell is shaded, the
more interactions were observed between the respective plant and pollinator. The most abundant interactions
were between Apis mellifera and Gilia capitata, Apis mellifera and Eriophyllum lanatum, and Bombus mixtus and
Lupinus laxiflorus. There were a total of 1729 interactions recorded at this meadow-watch.

In each meadow-watch, observations of plant-pollinator interactions were made in 10
plots in the meadow during 15 one-minute intervals. The record for each interaction
includes the plant, the pollinator, the meadow-watch, the plot, and the number of times
the interaction was seen during that minute. At each interval, the temperature, time of
day, and cloud cover were recorded. For our purposes, we will use N, (i, j) for the total
number of interactions observed between plant i and pollinator j over all 10 plots and all

15 one-minute intervals of meadow-watch t.

Xylota sp x



Before every meadow-watch, researchers surveyed the plant species in all 10 plots in the
meadow watch, noting the plots where the plants were located as well as how many
flowers of that plant species were blooming. This data was compiled into a separate
dataset for plant availability. We will use A, (i) to indicate the total number of flowers of
plant species i during meadow-watch t.

Models

Multinomial Model

The goal of the multinomial model is to statistically determine which plants a pollinator
prefers from the field study data by fitting a multinomial distribution. In this model, a
given pollinator assigns preference scores (also referred to as scores and by ¢) to each
plant species indicating how much the pollinator likes that species. A higher score
indicates that the plant species is preferred more than a plant species with a lower score.
Our goal in this model is to find ¢;, which represents the score function for some

pollinator j.

In the multinomial model, we can think of the pollinator “rolling a die” with the names of
a plant species on each side of the die to determine which plant species it will visit next.
However, this die is not evenly weighted. Each side of the die will be weighted
differently according to a score that depends on the preference score and the relative
abundance of the plant in the meadow. The preference score for each plant is fixed for the
full dataset. We then use the interaction data for that pollinator species and the
probabilities of the pollinator visiting each plant to calculate the likelihood of the set of
observed interactions.

First consider the set X = {1... P} which ennumerates all plant species. On some
meadow watch t, only a subset of X is available. The availability of plants at meadow-
watch t can be denoted by a vector A, of size P where the number of flowers of plant
species i is denoted by A;(i) € N. Now, we know that pollinator j makes a collection of
visits on meadow-watch t,V; = {N;(1), N;(2), ... , N:(P)}. We denote the number of
times j visits i by N, (i) = Zf;l 1[V.(k), i] where I[V,(k), i] is an indicator function. The
total number of visits made is K;. The indicator function is equal to 1 when V,(k) is
equal to i and O otherwise. In this collection, v, € {1, ..., P} and v, represents the k™
plant species that was visited by pollinator j on meadow-watch t.

The pollinator assigns a score for each plant i which we will denote as the score
function ¢;; € R. This function gives a real-valued score to plant i indicating the



pollinator j’s relative preference for i. Then the probability that pollinator j’s k™ visit was
to plant i is:

A, () exp(dy)
Zliar=1 A, (") eXP((I)irj) .

Gi(Atr(bj) = P(v, =il A, q)j) =

The likelihood of observing the visits V; visited by pollinator j on meadow-watch t is:

_ _ K;! Ne(@)
LV ) = s Nt(N)!lT[ei(At, o).

Over the entire summer, the likelihood of the observed data is:

K;! Ne(i
L(Vt;¢j) = U(Nt(l)! .th(N)!l_.[gi(Atrd)j) O)'

As the resulting likelihood values will be extremely small, we will want to work in log-
space. Therefore, we will use the loglikelihood of the observed data:

K,!
10s6,) = 3 b+ 20 ok )
t i

LL(Viid) =) <log(Kt!) — (log(N(1) + -+ log(N,(N))
t

+ Z N, (D) log(8; (A, q)j))) :

We also introduce a regularization term to reduce over fitting the model. The parameter
lambda will be calibrated, via cross-validation, to optimize the ability of the model to
generalize to new meadow-watches. Our final likelihood model will be:

PLL(V;; ¢;) = LL(V;; @) — lz,%z

The ¢; parameters we choose will be the ¢; which maximizes the PLL () function
(penalized log likelihood) for the interactions we observe in the field data.



Originally, we planned to use a multinomial model in which we truncated the interaction
counts to 0 and 1 to indicate whether the interaction occurred or not. However, the
preliminary work showed that this model cannot be applied to all pollinators in general.
Please see Appendix A for more details about this model and the results from this model.

Traits Model

The traits model investigates whether the traits of the available plants can predict the
preferences of the pollinators. We take two approaches with this model. The first is a
two-phase approach where we first fit the score function and then use the traits to predict
the scores. The second is a single combined model to see how well the preferences can be
expressed in terms of the traits.

For simplicity, we chose a linear model where the traits of the plant species are
represented by the matrix T = {1, ¢ty, ..., t,} with one row for each species where 1
represents the intercept and wy, wy, ..., w,, are the corresponding coefficients. The term
wy is the intercept. Our goal in this model is to find wy, wy, ..., w,, Which are constant
over all the plants.

We can now express ¢, ;, the score given to plant i by pollinator j, in terms of the traits.
Gij = Wo + Wity + Waty; + o+ Wity

Two-Phase Approach

We will first consider cT;l-j, the score given to plant i by pollinator j, that we fit to the data
using the multinomial model. We will use a linear regression to find the values of the
coefficients. The linear regression may provide insight into which, if any, of the floral
traits seem to affect the preference scores of the pollinator as expected. If the regression
shows that there is a correlation between the plant’s traits and the score given to the plant,
we can use the combined model explained in the next section.

Combined Model

In this model, we will reparameterize the multinomial model such that the probability is
calculated using the traits rather than the ¢ score. In that case, the probability in the
multinomial model will be:

A (D) exp(wg + wyty; + - + wyty)
ijY:lAt(i,) exp(wo, + W1t1i/ + -+ Wntnil)

ei(At'(Is) = Pvpy=i|Ad) =

We can then continue to evaluate the multinomial model as a function of the traits of a
plant. We will use gradient descent to find the coefficients wy, wy, ..., wy,.



The Traits

We will be evaluating the effect of 11 traits of a flower on the score function. The values
for most of the traits are categorical values. R handles these categorical values
automatically for us. The 11 traits are the following:

1.

10.

11.

Biomass/flower: Estimate of reward per flower (inflorescence) per species.
Measured by multiplying the height, width, and length of the flower.

Visibility: The color of the flowers. The values for this trait are either “bright” or
“not bright”.

Closed: Flowers can either be closed or open. Closed flowers can only be
pollinated by the pollinators that are skilled at prying the flower open. Open
flowers do not require pollinators to have that skill.

Pendant: Flowers are either suspended or erect. Erect flowers bloom facing up.
Suspended flowers open to the side or upside down and pollinators must have the
skill to approach the flower from the bottom.

General Tube Shape: The general shape of the plant causes some pollinators to be
excluded by the plant. Plants are categorized as severe exclusion, moderate
exclusion, and poor exclusion depending on the width, length, and shape of the
plant’s tube.

Life Form: This trait categorizes plants as annuals or perennials.

Flower Form: This trait states if the flower is a bow! or plate shaped flower or if
exclusions apply.

Pollen Size: The value of this feature is “okay” if the pollen of the plant is of
average size and “difficult” if the pollen is either small or large. If the pollen is
too small or too large, bees are unable to harvest the pollen.

Diel: The value of this feature is “yes night” if the plant is ever open during the
night time and “no night” if the plant is only open during the day.

Platform: This feature can have a value of “strong”, “weak”, and “not useful”.
The value “not useful” indicates that the plant is not useful for mating purposes,
because the flower does not provide the visibility (advertising) necessary for an
insect to find a mate. The value “strong” indicates that the advertising value for
this flower is very high, and the value “weak” indicates that the flower does not
have very much advertising value.

Feebleness: This feature measures how strong the stem of the plant is. If the value
of this feature is “feeble”, it means that large insects will break the flower if they
try to land on it. If the value is “strong”, the size of the pollinator may also come
into play.
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Simulated Data Generation

It is necessary to evaluate the models with simulated data in order to debug and
understand them. Before we proceeded with the field data, we wanted some reassurance
that the model we are working with was doing a good job in the ideal situation where the
assumptions of the model are being met. Therefore, in our initial evaluation of the
models, we generated simulated plant-pollinator interactions.

To do this, we sampled the simulated data from the distribution specified by the
multinomial model using three score functions that we chose to reflect different kinds of
pollinators. We generated simulated data for all the meadow-watches over all 4 years and
used the availability for plant i at meadow-watch t (4,(i)) that is reported in the field
data.

To generate the data, we specified three different score functions. The “normal” score
function, representing a generalist pollinator with some preferences, was based on
random numbers generated in the range [—2, 2] with a zero-mean. The “half-special”
score function, representing a specialist pollinator that prefers a few plants much more
than all the others, had all but 3 plants with a score of —2. The 3 preferred plants had a
score of 2. The “true special” score function, representing a specialist pollinator that
prefers one plant above all others, had only one plant with a score of 2. All other plants
had a score of —2.

Using these three score functions and the plant availability provided in the anthesis data
from the field, we calculated the probability of the pollinator visiting each plant at that
meadow watch. Then, to simulate the plant-pollinator interactions, we used the
rmultinom() function in R to randomly assign a pre-set number of visits that pollinator
makes to a certain plant in a certain meadow-watch. We chose to allow the pollinator to
make 50 visits during one meadow-watch after analyzing the number of visits Apis
mellifera makes during one meadow-watch. This generates the N, (i) we use in the
multinomial and traits models.

After conducting experiments using the simulated data, we ran the models on field data
from each year separately to see how the pollinators in our study responded to different
plant distributions. We also ran our model on the cumulative set of data.

To simulate data for the evaluation of the traits model, we followed a similar approach. In
this simulation, we used the real traits for each flower along with the real availability for
each flower at each meadow. We set weight vector W, which acts as the coefficient to the
traits, to find the resulting score function ¢ using the equation T - W = ¢. We then
simulated a pollinator with score function ¢ using the method described above. A new
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weight vector W is fitted to the simulated data. We can generate the score function
associated with W by using the equation T - W = ¢.

Bootstrapping for Confidence Intervals

One concern we have when using the field observations is that we do not know the true
distribution of the data, and we only have one dataset. If we had more datasets, we could
create confidence intervals for the preference scores that are fitted by the model to each
dataset. This would show us a range in which to expect the true value of the preference
score and would give us confidence that some plant species are really ranked higher than
or lower than other plant species.

The idea behind bootstrap is to use the field observations as a population that
approximates the true distribution of interactions. We can then create new samples from
the field observations by resampling from the field observations without replacement. We
created 200 bootstrapped datasets for each year and the aggregate dataset over all years.
To create the bootstrapped datasets, we resampled from the original field interactions in
each meadow-watch the same number of times the meadow was used in the original
dataset. We then fitted the model to the bootstrapped meadow-watch interactions.

Evaluation

Goodness of Fit—Chi-Squared Test

The Chi-Squared goodness of fit test determines whether the distribution of the sample
population matches the distribution predicted by the fitted model for the interactions
observed for one pollinator j. To determine if we can reject the null hypothesis, we
compare the expected and observed frequency counts of each variable using the test
statistic

Pyt

EL:Z it — Elt)

Here, P; is the number of plant species available at meadow-watch t, L is the number of
meadow-watches in which both the pollinator was observed, and 0;, = N,(i). E;; is the
number of interactions we expect between the pollinator and plant species i on meadow-
watch t. We then fit ¢ to the field data and calculate E;, = 6;(4,, ¢) XF 0;,.
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The total number of terms in our x? test statistic is X, which is the number of possible
(meadow-watch, plant) pairs (each pair is a cell) where the pollinator had a probability
greater than zero for visiting that plant at that meadow-watch. X is slightly less than LP
where P is the total number of plant species in the dataset.

For this test, we must penalize one degree of freedom for each meadow the pollinator was
present in (L) because we use the number of visits observed in the meadow rather than
estimating this quantity independently. As we are also estimating ¢ for each plant, the
number of parameters is P, and we must penalize one degree of freedom for each
parameter. Because we fit a regularization parameter lambda, we must penalize one
degree of freedom for that. Our final calculation for the degrees of freedom (df) is

df =X—-L—-P—1.

The chi-squared test compares a null hypothesis (Ho) to an alternative hypothesis (Hy). In
this case, we will run two tests. The first test will have a null hypothesis as the uniform
score function (the preference score for each plant species is the same) and the alternative
hypothesis will be that the true distribution is not the uniform distribution. The second
test will have the null hypothesis that is equivalent to the learned probability distribution
and the alternative hypothesis will be that the true distribution is not equivalent to the
learned probability distribution.

A smaller y? indicates a better fit. We will then compare the y? statistic with the y2
distribution to determine the p-value of this test. If the p-value is less than 0.05, we will
reject the null hypothesis for that test.

Correlations

We used the Pearson’s product-moment correlation coefficient (Pearson’s r) and
Spearman’s rank correlation coefficient (Spearman’s p) to evaluate the scores fitted to
simulated data using the multinomial model in comparison to the true scores (comparing

¢ to P).

Pearson’s r is a test statistic that measures the linear correlation between two variables X
and Y. An r value of +1 denotes full positive correlation, -1 denotes full negative
correlation, and O denotes no correlation between the variables. The Pearson r is defined
as follows:

S Y (i — )i — )
VI G0 — 07 VI 0i - )2
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In this statistic x; and y; are elements in the variable sets X and Y. x and y are the
means of each set. When comparing the true scores and the estimated scores, if the model
fits well, the statistic will have a value close to 1.

Spearman’s p is defined as the Pearson correlation coefficient for ranked variables in two
sets X and Y. Each element in the sets X and (X;, Y;) are turned into ranks x; and y; that
are calculated using the position of the element in ascending order in the set. If there are
ties, the elements with ties are given an average rank by adding up all the positions and
dividing by the number of elements with the same value. After the ranks are ascertained,
we calculate the Spearman’s p statistic:

6 d?

=1 —
p nn2-1)

In this statistic, d; = x; - y;, which is the difference between ranks. When comparing
the true scores and the estimated scores, we expect to have p close to 1.

Likelihood Ratio Test

We used the likelihood ratio test to compare the multinomial model and the traits model.
This test is similar to the Chi-Squared test in that it can be used to make a decision
between two hypotheses. However, the likelihood ratio test is used to see if the likelihood
of a model with a given set of parameters 6, has a likelihood significantly different to the
likelihood of a model with a different set of parameters 6, where 8, is the null hypothesis
and 6, is the alternative hypothesis.

The test statistic A(x) calculates the ratio between the likelihood of the observed data
using the parameters 6,, denoted by the function L(8,|x), and the likelihood of the
observed data given 6,, denoted by the function L(8,|x):

L(%IX))

/l(x) = —2 % log<L(9—|X)

A large value of A(x) suggests that the null hypothesis gives a much better fit to the data
than the alternative.
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Results
Multinomial Model

Using Simulated Data

Our first step was to test the multinomial model on the simulated data. For each of the
three “true” score functions (normal, half-special, and true-special), we conducted 10
trials. In each trial, the simulated pollinator had 50 interactions with the plants in each
meadow-watch. We conducted these tests using both the unregularized multinomial
model and the regularized multinomial model to assess the effect of regularization. In
each test, we compared the score function fitted by the model using the simulated
interaction data to the true score function using Spearman’s p and Pearson’s r correlation
statistics.

Through these experiments we find that the multinomial model works well when dealing
with a true normal score function both with and without regularization. We see in both
Table 1 and Table 2, both Kendall’s T and Spearman’s p correlations are quite high for
the normal score function. Higher values for these two statistics indicate that the score
functions when ranked match up well. The higher value for Pearson’s r statistic in Table
2 for the normal distribution indicates that the exact values of the score functions match
up better with regularization. We can see the effect of regularization on Pearson’s r in
Figure 1 and Figure 2. We believe that the most appropriate correlation measure for this
task is Pearson’s r. Our objective is to find the most accurate score function for the
pollinator. Pearson’r r is the most accurate measure for that. Kendall’s T and Spearman’s
p correlations measure how well the ranks (which are different from the scores) of the
pollinators match up.

The biggest problem with the unregularized model is the large negative values assigned
to plants that are available to the pollinator, but are never visited. These large negative
values are a result of not being able to calibrate the score function to the data. To penalize
the model if it assigns large negative values, we will use the regularized multinomial
model. We used cross-validation to choose a A for the penalized multinomial model and
found that the best A = 0.25. This was the best regularization term across datasets. We
also see that without regularization, the fitted score function does not match the true score
function well for the half-special and true-special score functions. Pearson’s r improves
greatly with regularization for the half-special and true-special score functions.
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Table 1: Correlation between the true score function and fitted score function without regularization over 10

Half-Special True-Special
Spearman’s rho Mean: 0.889 Mean: 0.283 Mean: 0.165
Deviation: 0.027 Deviation: 0.0 Deviation: 0.0
Range: 0.854-0.926 Range: 0.283-0.283 Range:0.165-0.165
Pearson’s r Mean: 0.531 Mean: 0.221 Mean: 0.221

Deviation: 0.022
Range: 0.178-0.266

Deviation: 0.043
Range: 0.462-0.608

Deviation: 0.032
Range: 0.192-0.299

Table 2: Correlation between true score function and fitted score function with regularization over 10 trials.

Half-Special True-Special
Spearman’s rho Mean: 0.865 Mean: 0.283 Mean: 0.165
Deviation: 0.021 Deviation: 0.0 Deviation: 0.0
Range: 0.827-0.901 Range: 0.283-0.283 Range: 0.165-0.165
Pearson’s r Mean: 0.812 Mean: 0.664 Mean: 0.560

Deviation: 0.059
Range: 0.597-0.796

Deviation: 0.025
Range: 0.768-0.858

Deviation: 0.062
Range: 0.485-0.659
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Figure 1: This plot shows the known (true) score Figure 2: This graph shows the effects of regularization
function compared to the fitted (calculated) score (A =.25) on the fitted score function. In comparison
function for the normal score function. The scores to Figure 1, which does not have regularization, the
estimated by this model correlate well with the true dots on this scatter plot are much closer to the x =y
scores of the pollinator. However, we have a group of line. The regularization also pulls the large negative
large negative values under the x=y line. Also, while values we see in Figure 1 towards their true values
the fitted score function generally follows the shape of which improves the Pearson’s r test statistic.

a linear line, it does not match the x =y line as we

would like it to.

Figures 1 and 2 compare the values of the fitted phi parameters to the true phi parameters
in the simulation. A pattern that is interesting to note is that the fitted scores can be
separated into 4 categories depending on the availability of the plant and the usage of the
plant by the pollinator.

1. Plantis not available, therefore it cannot be used (blue): Because the plant is

never available, we cannot learn the pollinator’s preferences. Therefore the plant
is always given a score of zero. There are a few of these points in the simulated
data, but not many. These points are more evident when you have a smaller
dataset.
Plant is available, but is never used (green): In this case, the pollinator shows a
strong preference against that plant species and the plant species is given a very
low score. When using maximum likelihood estimation without penalization, the
model sends the estimated preference scores to —co. Regularization forces these
values to smaller numbers.
Plant is available and used between 1-10 times (red): The points in this category
are generally close to the true value of the score for that plant.
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4. Plantis available and used more than 10 times (black): This category behaves in
the same way as category 3. This category is more useful when analyzing the
specialized distributions. The plants that receive the highest scores are usually in
this category.

These four categories are easy to see in Figure 1 where there was no regularization. With
regularization, these four categories are not as separable. We can also see that that the
fitted (calculated) score distribution with regularization is much closer to the x = y line.
While we have only presented the comparison between the true and fitted score functions
for the normal score function, the results are representative for the half-special and true
special true score functions. In all subsequent sections, we will use the regularized
multinomial model to fit the score functions.

Experiments on the HJ Andrews Data:

To test the model against the field interaction data, we performed goodness of fit tests on
the data for each year as well as the aggregate data over all the years. We tested our
model on visits made by Apis mellifera. The results from the goodness of fit tests are
shown in Table 3. All the goodness of fit test resulted in p = 0. This indicates that the
expected values for the interactions are significantly different from the observed
interaction data. We also evaluated the field interaction data against the expected visits
for a pollinator using the uniform score function using goodness of fit tests. This test
indicated that the field interaction data is significantly different from expected interaction
values of a pollinator following the uniform score function.

We also applied the likelihood ratio test to compare the hypothesis that the uniform and
fitted preference models are equally good at explaining the observed data versus the
alternative that the fitted preference model is better for the aggregate dataset. The test
gives very strong evidence against the null hypothesis (A = 31483.65 with 977 df;

p = 0). This shows that the ratio of likelihoods is extremely unlikely under the null
hypothesis that the two models fit the data equally well. This means that the field data is
better explained by the multinomial preference model than by the uniform preference
model.
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Expected vs Observed Interactions
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Figure 3: This figure shows the expected number of interactions calculated from the preference scores fitted to
the field data using the multinomial model and the observed number of interactions for every possible (meadow-
watch, plant species) pair for Apis mellifera in the field data. Note that because the expected number of
interactions ranged from 10715 to 105, the axis for the expected interactions is in log space. We see here that the
expected interactions does not have a strong effect on the observed interactions.

Table 3: The goodness of fit y? received comparing the field interactions of Apis mellifera to the expected
interactions calculated using either a score function fitted to the field interaction data or the uniform score
function. We find that the p-values are extremely low (p = 0) in all cases.

Goodness of fit for the fitted Goodness of fit for the uniform

score function (x?) score function (x?)
2011 16167407 15091.87
2012 1909409 11543.29
2013 185040531 11103.43
All Years together 22041400 17406.44

Table 4 shows the plants that Apis mellifera preferred most for each year 2011, 2012,
2013, 2014, and from an aggregation over all four years. We see that Hydrophyllum
occidentale is the most preferred plant over all of the years. However, it only appears in
the top ten most preferred plants of 2011. A closer look at the availability and usage of
Hydrophyllum occidentale shows that this plant is available only in 2 meadow-watches in
2011 and in 1 meadow-watch in 2012, with a total of 195 flowers across the two years.
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However, Apis mellifera was only active in one of those three meadow watches (CNE
Watch 1, 2011). The only visits Apis mellifera made during this meadow watch were to
Hydrophyllum occidentale although there were many plant species which were more
abundant.

Table 4: The top 10 preferred plants for Apis mellifera for each year and then for the data aggregated over all of
the years. We see that plants that appear in the top 10 most desired plants over all four years are likely to be in
the top 10 most desired plants for the aggregate dataset, but not always as with Gilia capitata. Hydrophyllum
occidentale likewise does not fit the pattern. It is in the top 10 for only one year, but also in the top 10 for the
aggregate dataset.

2011 2012 2013 2014 All Years

1 Hydrophyllum  Rudbeckia Rudbeckia Rosa Hydrophyllum
occidentale occidentalis occidentalis gymnocarpa occidentale

2 Symphoricarpos Luina stricta Sedum Boykinia major  Boykinia major
mollis oreganum

3 Cirsium Sedum Heracleum Senecio Heracleum
callilepis oreganum lanatum triangularis lanatum

4 Rudbeckia Cirsium Hypericum Senecio Senecio
occidentalis callilepis perforatum integerrimus triangularis

5 Potentilla Symphoricarpos Anaphalis Rudbeckia Senecio
gracilis mollis margaritacea occidentalis integerrimus

6 Agoseris Potentilla Gilia capitata Hypericum Rudbeckia
heterophylla gracilis perforatum occidentalis

7 Erigeron Phacelia Perideridia Gilia capitata ~ Symphoricarpos
foliosus hastate gairdneri mollis

8 Senecio Agoseris Clarkia Cirsium Cirsium
triangularis aurantiaca amoena callilepis callilepis

9 Gilia capitata Brodiaea Erigeron Brodiaea Perideridia

congesta foliosus congesta gairdneri

10 Eriophyllum Erigeron Brodiaea Potentilla Solidago

lanatum foliosus congesta gracilis canadensis

Likewise, we have the top scoring plants for Bombylius major and Eristalis hirtus for
each year and the aggregate dataset in Table 5 and Table 6 respectively. These two
pollinators behave quite differently from Apis mellifera, but it is interesting to note that
these three pollinators all share at least a few plants between their top 10 lists. For
example, Gilia capitata and Sedum oreganum appear in some top 10 list for all three
pollinators.
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Table 5: The top 10 preferred plants for Bombylius major for each year and then for the data aggregated over all
of the years. As with Apis mellifera, the most preferred plants for Bombylius major in the aggregate dataset over
all years are all top scoring plants in other years. No new plants are introduced in the top 10 that have not been
seen before. However, unlike Apis mellifera, Bombylius major’s list of preferences changes quite a bit every year.
There is only one plant, Gilia capitata, that is scored highly over every year.

2011 2012 2013 2014 All Years

1 Gilia capitata  Gilia capitata Penstemon Brodiaea Brodiaea

procerus congesta congesta

2 Mimulus Stellaria Gilia capitata Fragaria Gilia capitata
tilingii crispa virginiana

3 Arctostaphylos Navarretia Montia Galium Arctostaphylos
nevadensis divaricata parvifolia oreganum nevadensis

4 Phlox diffusa ~ Penstemon Mimulus Gilia capitata Senecio

procerus tilingii integerrimus

5 Sedum Arenaria Agoseris Claytonia Claytonia
spathulifolium  capillaris heterophylla  lanceolata lanceolata

6 Arenaria Vicia Sedum Senecio Agoseris
capillaris americana oreganum integerrimus  heterophylla

7 Montia Phlox diffusa  Delphinium Penstemon Mimulus
parvifolia nuttallianum  cardwellii tilingii

8 Delphinium Cerastium Potentilla Erigeron Phlox diffusa
nuttallianum arvense gracilis foliosus

9 Calochortus Eriophyllum  Phlox gracilis Lupinus Arenaria
subalpinus lanatum laxiflorus capillaris

10 Penstemon Sedum Mimulus Delphinium Montia
cardwellii oreganum nanus nuttallianum  parvifolia

These top 10 lists also give us some insights about the behavior of these pollinators over
the years. Apis mellifera seems to be quite stable because the many of the same plants
appear over and over again in the top 10 lists over the years. However, Bombylius
major’s behavior is much less predictable over the years. Eristalis hirtus, on the other

hand, seems to be quite stable over the years, but then does not behave as expected in the
aggregate dataset of all the years combined. In particular, Perideridia gairdneri and Aster
ledophyllus show up in Eristalis hirtus’s top 10 list for all years, but neither shows up in
the top ten list for a single year.
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Table 6: The top 10 preferred plants for Eristalis hirtus for each year and then for the data aggregated over all

of the years.

2011 2012 2013 2014 All Years
1 Eriophyllum Eriogonum Eriogonum Cirsium Zigadenus
lanatum nudum compositum  callilepis venenosus
2 Polygonum Eriophyllum  Erigeron Zigadenus Cirsium callilepis
phytolaccaefolium lanatum foliosus venenosus
3 Erigeron foliosus ~ Calochortus  Zigadenus Eriophyllum  Polygonum
subalpinus Venenosus lanatum phytolaccaefolium
4 Zigadenus Zigadenus Eriogonum Hypericum Eriophyllum
Venenosus VENEenosus umbellatum  perforatum lanatum
5 Potentilla Potentilla Potentilla Gilia Calochortus
glandulosa glandulosa glandulosa capitata subalpinus
6 Aster ledophyllus  Angelica Perideridia  Potentilla Sedum oreganum
arguta gairdneri gracilis
7 Calochortus Eriogonum Potentilla Phlox Potentilla
subalpinus umbellatum  gracilis gracilis glandulosa
8 Clarkia amoena Erigeron Sedum Rumex Erigeron foliosus
foliosus oreganum acetosella
9 Ligusticum grayi ~ Ligusticum Eriophyllum  Ligusticum Perideridia
grayi lanatum grayi gairdneri
10 Gilia capitata Gilia Solidago Senecio Aster ledophyllus
capitata canadensis integerrimus

Bootstrapping from the HJ Andrews Field Data
A conclusion from our previous testing of the observations from HJ Andrews Forest is
that we do not have enough data to have confidence in our results. To explore further, we
used bootstrapping to generate 200 new datasets that come from the same distribution as
the original datasets. On each new dataset, we calculated the score given to each plant for
each year as well as all years and then calculated a 95% confidence interval for the scores
of the plants. The following scatterplots (Figures 4 to 8) show the confidence intervals

generated

for each year.
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An interesting outcome of the bootstrapping is that the confidence intervals are very close
to the same ranking that we received from the multinomial model in the previous section.
Also, for many plants, the confidence interval is very small. This shows that we can be
confident about the top ten ranked plants that we display in Table 4, Table 5, and Table 6.
We also see that the plants that have confidence intervals with the largest ranges are
plants like Rosa gymnocarpa, Rudbeckia occidentalis, and Aster ledophyllus.

Traits Model

Research shows that traits of flowers are important in how a pollinator visits them. For
example, Apis mellifera is a larger insect and it is unable to hover above flowers. Due to
these limitations, we would expect that Apis mellifera cannot visit flowers that are
extremely small or flowers whose stems are unable to hold its weight. However, there
may be many other floral features that may have an effect on pollinator preferences.

Preliminary testing

The first question we explored was if the traits of flowers really had any relationship to
the score functions. To explore this, we took the actual usage data for Apis mellifera and
fitted the score function using the multinomial model. We then fitted the weights for the
traits to the score function using linear regression, following the two step approach
described in the methods section. Our findings are shown in Table 1. This table shows
that the traits that affect Apis mellifera’s preferences the most are Flower Form (value:
“exclusion exists”), Closed (value: “open access”), and Platform (value: “platform”), as
the weights for these traits are the greatest. Apis mellifera is a medium-to-large insect and
cannot visit very small flowers, which explains why the flower form is important to this
pollinator. This pollinator also does not have the ability to hover above flowers,
explaining why Apis mellifera prefers flowers with a platform. Pollinators also require
special skills to open closed flowers, so it makes sense that Apis mellifera prefers flowers
that are open access.

While the effects of the previous traits are expected, some of the traits (Pendant and
Pollen Size) do not seem to have the expected sign. A plant with average pollen size
should have a positive weight for Apis mellifera, because pollen of average size is the
easiest to carry for this pollinator. Likewise, Apis mellifera does not have the skill to fly
up from underneath a flower, so a suspended flower would be expected to have a
negative weight. However, the standard errors for the coefficients of the traits are quite
large compared to the coefficients themselves, so the true sign could be different from the
sign of the fitted coefficient. The exceptions are the Closed feature which is significant at
the 0.05 level and the Flower Form feature which is significant at the 0.1 level.

28



Table 7: Weights for the traits for Apis mellifera. The R? value for this test is 0.1696.

Category Coefficient Standard Error
Intercept -0.857089 1.322
Biomass/flower 0.001021 0.0024
Closed (open access) 1.070773 1.125
Pendant (suspended) 0.099545 1.002
Visible (not bright) -0.369354 0.766
General Tube Shape (poor exclusion) -0.216557 1.051
General Tube Shape (moderate exclusion) 0.814345 0.811
General Tube Shape (severe exclusion) -0.638057 1.386
Life Form (Perennial) -0.010474 0.687
Flower Form (Exclusion exists) -1.059014 0.799
Diel (flower open at night) 0.272519 0.807
Pollen Size (average) -0.745493 0.605
Platform (platform) 1.211060 0.752
Platform (weak) -0.182099 0.989
Exclusion Feeble (strong) 0.458899 0.881

To explore the effect the traits have on the score function in more detail, we also created
a few plots visualizing the fitted score function (using the regularized multinomial model)
as the function of one trait at a time for Apis mellifera. We see in Figure 3 that the
biomass of the flower has a slight influence on the score, but not much. Figure 4 shows
that the feebleness of the flower has a stronger influence on the score for the plant and
verifies the result from the linear regression above. Figure 5 likewise shows that the
general tube shape has more effect on the score function than biomass of the flower, but
less than the feebleness of the flower. From these plots, we believe that the traits do
explain some aspects of the preference scores.
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Figure 9: This plot shows flower biomass against the score function. Most of the flowers in this study are quite
small and have various scores. The large flower with a very low score at the bottom right of the graph skews the
data. Without that point, biomass would have a stronger effect on the score function.
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Figure 10: This graph shows how the feebleness of the plant affects the score of the plant. Here we can see that
plants with a feebleness value of "'strong™ correlates with higher scores.
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General Tube Shape effect on Phi
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Figure 11: This graph shows the score of the plant compared to the general tube shape of the plant. We see that
moderate exclusion and severe exclusion pull the score of the plant down.

Simulated Data Experiments

To make sure the traits model behaves as expected, we generated a weight vector W for
the traits model and simulated a pollinator whose preferences phi are generated according
to that weight vector. We then fit a new weight vector I to the simulated data using the
single combined model. We can compare W to W here and the results of the correlations
are in row 1 of Table 8. We also calculated the score functions ¢ and ¢ using the
equation: T - W = ¢. We can now compare ¢ to ¢, and the results can be found in row 2

of Table 8.
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Table 8: W is the true weight vector and ¢ is the corresponding true score function which we can calculate from
W. We then simulate data using ¢ and fit W to the simulated data. ¢ was calculated using W . The following
values compare ¢ to W and ¢ to ¢. The ranges show that there are some cases where W and W correlate very
well, but there are other cases when they do not correlate well.

Spearman’s rho Pearson’s r
Comparing W to W Mean: 0.594 Mean: 0.811
Deviation: 0.117 Deviation: 0.226
Range: 0.411-0.857 Range: 0.330-0.999
Comparing ¢ to (7’ Mean: 0.882 Mean: 0.999
Deviation: 0.085 Deviation: 0.001

Range: 0.800-0.992 Range: 0.998-1.000

Comparison between True and Fitted Weight Vectors

Fitted Weights

T T T T
-0.5 0.0 05 10 15

True Weights

Figure 12: This plot shows the known (true) weights for the traits compared to the fitted (calculated) weights.
The weights estimated by this model correlate well with the true trait coefficients for the pollinator. The model
generally does very well except for a few points. The model was tested on three weight vectors that were
arbitrarily assigned. The color of each point represents the true weight vector that was used. We see that two of
the three weight vectors are estimated very well by the model.
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We see in Table 8 that when we compare W and W, we sometimes get a very good
correlation, and sometimes get a correlation that is not as good. Especially with Pearson’s
r, we see a large range of correlation values. However, when we translate the weight
vectors to ¢ and ¢, we see that the correlations improve. To explore this effect more, we
used the field interaction data to test the traits model

Experiments on the HJ Andrews Data

Using the traits model, we report the fitted weight vectors for Apis mellifera, Bombylius
mayjor, and Eristalis hirtus in Table 9. Ultimately, these weights do not seem to correlate
with what we know about the pollinators themselves. For example, Apis mellifera should
be attracted to flowers with strong stems (the feebleness trait) and should avoid flowers
that are suspended (the pendant trait). Many of the weight values seem like they do not
have the correct sign.

Table 9: This figure displays fitted weights for each trait and value combination for Apis mellifera, Bombylius
major, and Eristalis hirtus fitted using the traits model on the field interaction data.

Category Apis mellifera Bombylius major Eristalis hirtus
Intercept -9.881 1.301 -5.738
Biomass/flower -1.245 4.926 -1.151
Closed (open access) 3.295 1.329 7.397
Pendant (suspended) 2.786 -2.462 -3.474
Visible (not bright) -3.256 -9.496 3.540
General Tube Shape -3.354 3.997 -8.064
(poor exclusion)

General Tube Shape 9.757 3.863 -1.308
(moderate exclusion)

General Tube Shape 6.144 3.428 -1.174
(severe exclusion)

Life Form (Perennial) 7.188 9.902 -2.628
Flower Form (Exclusion -7.743 -2.695 -6.809
exists)

Diel (flower open at night) 8.001 -2.269 3.518
Pollen Size (average) -2.103 -1.802 -1.237
Platform (platform) -6.588 -7.794 -2.861
Platform (weak) -2.735 1.275 9.598
Exclusion Feeble (strong) -1.500 -4.978 -5.211
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Bootstrapping from the HJ Andrews Dataset
We applied the bootstrapping technique with the traits model with Apis mellifera to get a
better understanding of the amount of error we have for the traits. We see from Figure 13
that the confidence intervals for the traits are also extremely small. This does not seem

intuitive, so before we make any more conclusions on the traits model, more

experimentation needs to be done. The confidence intervals may be extremely small
because there is not much variation in the bootstrapped datasets. We may have to look
back to see if there is a problem with the method we use for the bootstrap.

95% Confindence Intervals using Bootstapping for All Years
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Figure 13: This figure shows the confidence intervals for the weights fitted to the field interaction data for Apis

mellifera over the aggregate dataset over all years. We created 200 bootstrapped datasets. We see that the

confidence intervals for the traits are very small. This can mean one of two things: 1) the weights predicted by

the traits model are very accurate or 2) the bootstrapped datasets are not enough to generalize on the true

interaction distribution of Apis mellifera.
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Comparing the Multinomial Model with the Traits Model

To compare the multinomial model and the traits model, we first took one pollinator (we
used Apis mellifera, Bombylius major, and Eristalis hirtus) and fitted a score function
™ for the field interactions by the pollinator. We then used the traits model to fit a
weight vector W to the same field interactions. These weights are recorded in Table 9.
Next we found the score function ¢ by using T+-W = ¢?). We then compared ¢
and ¢ using Kendall’s 7, Spearman’s p, and Pearson’s r correlation statistics. We also
used the likelihood ratio test to compare the likelihoods of the field interaction data when
the pollinator used ¢ and when the pollinator used ¢ ). Our results are summarized in
Table 10.

In Table 10, we see that ¢ and ¢ do not correlate well, so the two models are
behaving quite differently. However, when we perform a likelihood ratio test on the two
resulting score functions ¢™ and ¢(®, we find that the likelihoods of these score
function are not significantly different. The data are not sufficient to reveal any difference
in these two models. We cannot draw the stronger conclusion unless we also have some
way of measuring the power of the test.

Table 10: Here we fit ¢(1)to the field interactions for the pollinator. We then fit W to the field interactions for

the pollinator and calculate ¢® using W. We then compare ¢ to ¢ using Spearman’s p, Pearson’s r, and
the likelihood ratio test for each pollinator.

Apis mellifera Bombylius major Eristalis hirtus
Spearman’s p 0.209 0.110 0.276
Pearson’s r 0.207 0.119 0.389
Likelihood ratio test  -23130.44 -1636.032 -1558.958

A
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Discussion

Conclusions

In this study, we created two models to simulate and determine the preferences of
pollinators: the multinomial model and the traits model. We find that the multinomial
preference model performs better than a model that has no preferences and only uses the
abundance of the flowers. However, the multinomial model does not explain the behavior
of pollinators entirely. The traits model is also not able to account very well for the fitted
preferences.

The regularized multinomial preference model explains the visit behavior of several
pollinator species much better than a model that assumes that a pollinator has no
preferences. When we evaluated the unregularized multinomial model on the simulated
data, we found that the model was able to predict only the true score distribution for the
“normal” simulation well. However, using regularization improved the multinomial
model. Comparing the likelihood of a model without any preferences and the likelihood
of the fitted multinomial preference model resulted in a likelihood ratio test statistic

A = 31483. A is statistically significant and shows the preference model works better
than a model without preferences.

While we show that the multinomial model is able to recover the preferences of the
pollinator from the simulated data, based on the goodness-of-fit test on the field data,
there are still several aspects of pollinator behavior that are not accounted for by the
multinomial preference model. When evaluating the multinomial preference model on the
field data using a y? goodness of fit test, we find y? is a statistically significant value.
This shows that the observed numbers of interactions are significantly different from the
expected numbers of interactions. One example of pollinator behavior that is not
explained well is the assignment of scores by the multinomial model for rare plant
species. For example, when we look at Apis mellifera’s preferences over the years to see
how the preferences changed, we see that Hydrophyllum occidentale appears the top
rated plants list only in 2011, but also appears as the top rated plant in the aggregate data
set. However, Hydrophyllum occidentale is a very rare plant and only appears in the same
meadow-watch as Apis mellifera once. This lack of information for some interaction pairs
could explain why the p-values for the goodness of fit tests on the observed data were so
low.

We also wanted to explore how we can predict the observed interactions using the traits
of the flowers. This model does not assign scores to each plant. Instead it directly fits the
weights on the traits. This steers the multinomial model toward preferences that could be
explained by the traits. However, we find that the traits model does not seem to be
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finding the true weight vector for Apis mellifera and other insects because the values of
the weight vector do not seem to have the expected signs let alone the values. Also, a
likelihood ratio test between the score function fitted to the multinomial model and the
traits model (A = —23130 with 977 df.; p = 1) shows us that the traits model and the
multinomial model do not behave very differently. We may have to look into other
approaches to improve the model even more.

Next Steps

The motivation for this study was to find the plant preferences of a pollinator so that we
can study the effects of losing or gaining plant species on plant-pollinator interactions.
However, while we have shown that we can take plant-pollinator interaction data and the
traits of the plants to find the score function for one pollinator, more work is needed to
make the multinomial model predictive and to adapt this model to a plant-pollinator
network (with multiple species of pollinators instead of just one).

One idea to make the multinomial model predictive is to incorporate the idea of
burstiness to explain what the multinomial model is unable to. In the models considered
for this study, we do not account for the sequence in which the interactions take place. In
essence, we assume that the insect flies up above the flower after each visit and randomly
selects a new flower. However, what if once the pollinator finds a flower it gives a high
score to, the probability of the pollinator visiting that same plant species is higher? This
idea is called burstiness and could explain non-random plant-pollinator interactions as
well as the effects of competition with other pollinator species. This model is detailed in
Appendix B.

Another approach to make the model more predictive is to use the traits data and the
interaction data to create a decision tree that classifies the plant as likely to be visited by
the pollinator or not likely to be visited by the pollinator. Using this approach, we can
find the combinations of traits that attract the pollinator the most. This could also address
the problem we have with the current traits model with the weights vector containing un-
intuitive values for some of the traits of the flowers.

We would also like to expand the multinomial and traits models so that they can handle
multiple pollinator species conducting interactions during the same meadow watch. In the
multinomial model, we find the likelihood of the set of visits one pollinator makes. To
expand this to multiple pollinator species, we would simply need to multiply the
likelihood of the observed visits of all pollinator species. One of the difficulties we might
encounter as we expand to multiple pollinator species is keeping the model density-
independent so that the number of plants or pollinators does not affect the behavior of the
model. With the current multinomial and traits models, we account for the density of the
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flowers. However, when we incorporate multiple pollinators, we need to account for the
density of the pollinator populations as well because in our current dataset, we do not
have the ability to count the exact number of pollinators in the meadow during the
meadow watch. One idea would be use the number of visits observed as a proxy, but we
would not be able to differentiate between pollinators that visit many different flowers
and pollinators that are populous. This would affect the density independence of the
model.

In this study, we have seen that the model gives different results depending on how much
data is observed. The results from an aggregate over all the years are very different from

the results over one year. More work should be done on analyzing how these results vary
due to the amount of data.

There are also many other ways of dealing with preference. One model that might be
interesting to explore in the context of plant pollinator interactions is the Preference-
Aversion model introduced by Franco (2013). This model uses a distinction between
biological need and a pollinator’s desire to learn the preferences of a pollinator in the
presence of competition and other non-ideal situations. A model like this could help us
account for competition and other challenges a pollinator faces in addition to their desire
to visit a particular flower.
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Appendix A: The Binary Preference Model

This appendix summarizes the preliminary studies done with the binary preference
model. This model was of interest to us because of the sampling errors that can occur
with field observations of plant-pollinator interactions. The presence or absence of an
interaction may be more reliable because rare pollinators are only observed a few times
and we cannot determine if the observations we see are due to specialization or due to the
probability of observing the interaction. We conducted the experiments with this model
on synthetic data so that we would know exactly how the model performed.
Unfortunately, this model seems to work only with generalist pollinators. This model is a
special case of the multinomial preference model introduced in the Methods section
where the interaction counts can only be 0 or 1.

A Multinomial Preference Model

Multinomial Model

In this model, we are trying to determine which plants a pollinator prefers from the field
study data. This model is a statistical approach, and our goal in this model is to find ¢;,
which is the score function for pollinator j. We assume that all the interactions during a
meadow watch are performed by an individual pollinator of species j.

First consider the set X = {1... N} which ennumerates all plant species. On some
meadow watch t, only a subset of X is available. The availability of plants at meadow-
watch t can be denoted by a matrix A; of size N x 1 where the number of flowers of plant
species i is denoted by A, (i) € {0,1} On this meadow-watch, some pollinator j makes K;
visits to flowers, which we will denote as a collection of visits

Ve = {Ve,Vay oo , Uiy o, V). In this collection, v, € {1, ..., N} and vy, represents the k™
plant that was visited by pollinator j on meadow-watch t. Please note that the notation v,
is for the ease of explaining this model. The order of the K visits is arbitrary.

The pollinator also has a score for each plant which we will denote as the score
function ¢; € R. This function gives a real-valued score to plant i indicating the
pollinator j’s preference for i. Then the probability that pollinator j’s k™ visit was to
plant i is:

Ac(D) exp (D)
Zhy A exp (¢0)

Plvp=i|A,d;) =
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From here on, we will make the dependence of the function P(v, = i | A, q>j) onAand
¢ ; implicit and will refer to this function as P(vk = i). Now, we know that pollinator j
makes a sequence of visits on meadow-watch t, V.. Then the number of times j visits i is
N.(i) = ’,f;l 1(V,(k),i) where I(V,(k), 1) is the indicator function. The indicator
function is equal to 1 when V,(k) is equal to i and 0 otherwise. The likelihood of this
particular collection of plants visited by pollinator j on meadow-watch t is:

K, -
LV ) = 5, ...Nt(N)!H(P(vk = ).

Over the entire summer, the likelihood of the observed data is:

Kt! . ~NN:(i
L(Vei b)) = H(Nt(l)! ...Nt(N)!l_[(P(vk(]) =0 to))'

As the resulting likelihood values will be extremely small, we will want to work in log-
space. Therefore, we will use the loglikelihood of the observed data:

K:! . N
LL(Vt; d)]) = Z (log(Nt(l)! Nt(N)!) + z Nt(l)log(P(vt(]) = 0))

LL(V; ;) = Z <10g(1<t!) — (log(N¢(1) + -+ + log(N(N))
+ Z N¢(Dlog(P(v,(j) = iD)

Binary Model

Because the data in our data set does not tell us the frequency at which a pollinator visits
a plant—only that it visits the plant—we must change the model because we only know if
the interaction occurred or not. With binary data, the calculated N¢(i) would be either zero
or one. Therefore we will call this the usage of a plant i by pollinator j U(i) € {0, 1}. We
can liken Ui, j) to a function that returns 1 if pollinator j visits plant i in the sequence V;
and 0 if j does not visit i.

Using this information, we can change the probability function to:
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A (D) exp((i, )
Zy:l Af(l,) exp(cl)(L’,]))

P(Ut(l']) =1 IAti (l)) =

Now we must change our likelihood estimate accordingly. K; = U

K,! _ o
LVei ) = H(Ntu)! WA H(P(vk(1> == )"®)))

L(Vi; ) = 1_[(<z U. (i, j)) ! H(P(vt(j) == )Vt DY)

For the synthetic data analysis, we will use the log likelihood function to avoid precision

errors:

L5 $) = Z(log((Z na j))) '+ ) UG, Plog(P(n () == )
t i i

Synthetic Data Analysis

The Algorithm
We tested our model on synthetically generated data. This is the algorithm with which we
generated data and analyzed the model:

1.
2.
3.

Choose the score function for the pollinator.

Calculate the probability a pollinator would visit each plant in the meadow
Generate random use data for all the meadows using the probability vector. The
generated data was frequency. To do this we used the function rmultinom() in R.
Here we must also specify the number of visits the pollinator during one sampling
unit.

Truncate frequency use data to binary use data.

Use gradient descent to find the optimal values of the parameters using binary use
data. We optimized the log likelihood of the interactions. We utilized the optim()
function in R to perform the gradient descent.

Compare the results with the original score distribution using a rank correlation
method.

We hard-coded 4 different score functions:

Normal: a generalist pollinator with some preference

Uniform: a generalist pollinator with no preference

True-special: a specialist that prefers one plant above all others
Half-special: a specialist that prefers a few plants much more than all others
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We required the score functions to calculate the probability that a plant will be visited.
We also required the availability of the plants for each meadow watch which we pulled
from our existing data.

To compare the results from optim() and the original score function, we chose to use
either Spearman’s rho or Kendall’s tau rank correlation coefficients. Spearman’s rho is
better at detecting large discrepancies in the two sets whereas Kendall’s tau is more
accurate with small sample sizes. Spearman’s rho is generally higher than Kendall’s tau.
For our purposes, | feel that Spearman’s rho will be better metric as small discrepancies
in ranking are not too important.

We were unable to use the R rank correlation function with our uniform distribution.

The Experiments

We had two variables that we changed: the number of visits the pollinator makes at one
time and the score function used by the pollinator. We had 4 options for the number of

visits: 1, 10, 50, and 100. We had 3 options for the score function: normal, true special,
and half special. We conducted 15 trials for each combination resulting in a total of 180
trials.

Figure 1 shows the results of all the trials for each the original score functions. Both the
true special and half special distributions have a very small range and have a low
correlation coefficient. On the other hand, the normal score function has a very wide
range and also has a very high correlation coefficient at times. To see where this model
works the best, | took the data associated with just the normal score function and split it
up by the number of visits, resulting in Figure 2. The highest median rank correlation
occurs when the number of visits is 10.
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Conclusions

This model does not work well with many of different types of score functions. However,
it works rather well with a generalist pollinator which has some preferences (i.e. the
normal score function). Also, the model seems to work best when the number of visits
made by a pollinator at one time is about 10. We believe that when there are not enough
visits, we do not have enough information to accurately predict the preference rankings.
However, when we have too many visits, rare interactions may be seen, and the
truncation from frequency to binary doesn’t give us the information about whether a
certain interaction is rare or not. This would also drop the correlation with the original
rankings.

This model should work well when analyzing species such as Bombus mixtus which are
known to visit many plants. Bombus mixtus has between 10-50 interactions in a meadow
for most meadows. However, there are a few meadows there this pollinator has had more
interactions. While | was able to calculate the score function for Bombus mixtus, I have
not yet implemented cross-validation to evaluate the score function.
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Appendix B: The Burstiness Model

The Model

The multinomial model and traits model described in the Multinomial Model section treat
each bee-flower visit as independent. While this model may explain much about the
behavior of insect pollinators according to their preferences, the sequence of visits the
pollinators make may be affected by competition from other pollinators as well as the
presence of predators.

To incorporate these factors into the model, we use “burstiness”. The idea behind
burstiness is to have a transition probability between each visit. Like in the multinomial
model and traits model, here we will assume that a single pollinator is making all of the
visits for a single meadow watch. Suppose the plant species can be modeled as consisting
of a set of C species groups: {G4, ..., G-}. At each visit, the pollinator has two choices for
the next visit:

1. Stay in the same group
2. Leave the group and randomly choose the next group

We will model the pollinator’s behavior as follows:

1. Choose a group g to visit

2. Choose a flower from species j € g according to the multinomial model (but now
restricted to the flowers belonging to this group that are available on day t in
meadow m)

3. Visit the flower

4. With probability & go to step 1 and choose a new group. Else go to step 2 and stay
with the current group.

The loop in steps 2-3-4 creates “burstiness”.

Now let’s construct the probabilistic model. For step 1, we can apply the multinomial
preference model and then compute the probability of each group. Hence, the probability
of pollinator i selecting group g is

P(gl®) = ) P = i| Ap )
jeg

Now suppose we had observed the individual visits Vi = {v1, Vo, ..., vk}, and let
v =1, ..., K index those visits. Let g, denote the group to which species v, belongs.
Then the likelihood of V; is
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Vi
LW1$,8) = P(g|)P (1191, ) | | P(gilge)P(ilgio )
k=2

where the transition probability is defined as follows

_ (=8 +5P(g,d) ifgy,=gys
P(gvlgv-1) = { 5 P(g,|9) otherwise.

To simplify the model, we start by assuming that each plant species j belongs to exactly
one group g. Now, because each group only has one plant, the probability of choosing a
certain plant in a group is always 1. We can remove the terms P(v,|g4, ¢) and
P(vi|gxk, @) to simplify the likelihood to:

Vi
LW1$,8) = P(g:l®) | | Plarlgi-n)
k=2

We can view this as a simulation. The bee flips a coin with probability § of heads. If it
comes up heads, then the bee draws a “new” group according to P( Jew |q,'>) If the coin
comes up tails, the bee stays with the current group. Hence, if the state did not change,
this could be either because of the 1 — § probability of tails or because of the probability
& of heads followed by randomly drawing the same group again. If the state does change,
it reflects heads followed by drawing a different group.

In practice, we only observe the number of visits {Nt,m(j)}?lzl, so the likelihood must
sum over all unique permutations P (V,):

LVIg ) =3 Y. L@V)lg,6)

) TL'EiP(Vt)

A Proposed Algorithm
In the formula above, m(V;) is a unique permutation of the original sequence of flower
visits. To evaluate this likelihood efficiently, we propose a dynamic program:

change use matrix U to a vector of plant visits V
Note: the ordering of V does not matter here
list = distinct elements of V
Ih = calculate the probability of the elements in list.
Note: At this point we have distinct permutations for one visit

for visit in 2:total_use:
list_temp = empty vector
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Ih_temp = empty vector
for entry in 1:length(list):
v_temp =V - elements present in list[entry]
for distinct plant in v_temp:
append [list[entry], plant] to list_temp
calculate likelihood of this permutation by multiplying transition prob with
Ih[entry] and append to Ih_temp
list = list_temp
Ih = Ih_temp

Total_Likelihood = sum(all elements of Ih)
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